首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The magnetic properties of Y2Fe17−xGax for 3≤x≤7 and Gd2Fe17−xGax for 5≤x≤7 have been investigated using 57Fe Mössbauer spectroscopy. These compounds have the rhombohedral Th2Zn17 structure. X-ray diffraction analysis of aligned powders shows that the easy direction of magnetization is parallel to the c-axis in Y2Fe10Ga7 and Gd2Fe10Ga7 and is perpendicular to the c-axis in Y2Fe14Ga3, Y2Fe12Ga5, Gd2Fe12Ga5 and Gd2Fe11Ga6. Mössbauer studies indicate that those samples are ordered ferromagnetically. The 57Fe hyperfine field decreases with increasing Ga content. This decrease results from the decreased magnetic exchange interactions resulting from Ga substitution. The average isomer shift, δ, for R2Fe17−xGax (R=Y and Gd) at room temperature is positive and the magnitude of δ increases with increasing Ga content.  相似文献   

3.
A crystal field (CF) investigation of the magnetic properties and heat capacities of RCuAs2 (R=Pr, Nd, Sm, Tb, Dy, Ho, Er and Yb) has been carried out using the observed average magnetic susceptibilities (1.8-300 K) of the title compounds. The CF parameters proposed for the systems show a systematic variation throughout the rare-earth series. Other physical properties dependent on the CF are also computed and compared with available experimental data. The experimental heat capacity data reported for a limited range of temperature agree well with computed heat capacity for all the compounds (except SmCuAs2 and YbCuAs2). CF J mixing was found to be appreciable for all the samples except YbCuAs2.  相似文献   

4.
A magnetic, electronic and structural study of the double perovskites Ba2REMoO6 (RE=Sm, Eu, Gd, Dy) has been performed. All materials crystallise in the cubic symmetry space group and the cell volume decreases as RE varies from Sm to Dy in accordance with Vegard's law. An antiferromagnetic transition is observed below TN=130 and 112 K for RE=Sm and Eu, respectively. The Néel temperatures of these ordered rare earth molybdenum double perovskites are much higher than previously observed in double perovskites containing Eu or Sm and a 4d or 5d transition metal arranged in an ordered rock salt configuration. The high Néel temperatures arise due to a strong superexchange magnetic interaction via the Mo-O-RE-O-Mo pathway. All of the phases are electronically insulating and there is no evidence of magnetoresistance at any temperature.  相似文献   

5.
First-principles calculations have been performed to study the electronic band structure and ferromagnetic properties of the double perovskite Sr2CrReO6. The density of states (DOS), the total energy, and the spin magnetic moment were calculated. The calculations reveal that the Sr2CrReO6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is 1.0 μB, in good agreement with the experimental value. By analysis of the band structure, we propose that the ordered double perovskite Sr2CrReO6 is a strong candidate for half-metallic ferromagnet.  相似文献   

6.
R6Mn23 systems, with R = Gd, Ho and Er, were hydrided to the composition R6Mn23Hx where x ap; 22. Magnetic properties of these systems and the parent intermetallics were studied over the temperature range 4 to 300 K and at applied field up to 21 kOe. Since Y6Mn23H25 was established earlier to exhibit only Pauli paramagnetism, the magnetism of the R6Mn23 hydrides must originate with the rare earth sublattice. Gd6Mn23H22 orders at ≈ 150 K, whereas ordering in Gd6Mn23 occurs at 468 K. The moment measured at 4 K indicates a non-collinear structure, perhaps generated by competition involving exchange between nearest and next nearest neighbors. The hydrides involving Ho and Er appear to remain paramagnetic to the lowest temperatures studied, perhaps because the reduced de Gennes factor exchange is insufficient to produce magnetic ordering. The possibility cannot be excluded, however, that they are antiferromagnetic.  相似文献   

7.
The thermo-luminescence (TL) of rare earth ions RE3+ (RE=Ln, excluding Pm, Eu and Lu) co-doped phosphors CaGa2S4:Eu2+, RE3+ was studied between room temperature and 300 °C, and 3D thermo-luminescence of the phosphors were measured from room temperature to 400 °C. The basic material CaGa2S4:Eu2+, showed at least two bands in the TL glow curve. Changing the auxiliary activator RE3+ (rare earth ion), intensities and the positions of the TL glow curve peaks were affected significantly. For the phosphors with long afterglow, auxiliary activator such as Ce3+, Pr3+, Gd3+, Tb3+, Ho3+, or Y3+ created some new defects in these compounds at lower trap levels and enhanced their TL intensities. The Nd3+ or Er3+ auxiliary activator only enhanced TL intensities to a low extent, so these two phosphors have short persistent luminescence at room temperature. TL intensities of La3+, Sm3+, Tm3+ or Yb3+ co-doped phosphors were suppressed greatly and no afterglow was shown. The relationship between auxiliary activators and corresponding thermo-luminescence curves of phosphors CaGa2S4:Eu2+, RE3+ are discussed in detail. According to our results, suitable activation energy and enough high corresponding trap density are necessary for the phosphor with long afterglow.  相似文献   

8.
A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29−xVxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants , and c and the unit cell volume of R3Fe29−xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y=6.5 and 6.9 in these hydrides.  相似文献   

9.
The crystal structure and magnetic properties of quaternary rare-earth intermetallic borides R3Co29Si4B10 with R=La, Ce, Pr, Nd, Sm, Gd and Dy have been studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in a tetragonal crystal structure with the space group P4/nmm. Compounds with R=La, Ce, Pr, Nd and Sm are ferromagnets, while ferrimagnetic behavior is observed for R=Gd and Dy. The Curie temperatures vary between 149 K and 210 K. The Curie temperatures in R3Co29Si4B10 (R=Ce, Pr, Nd, Sm, Gd, Dy) compounds are roughly proportional to the de Gennes factors.  相似文献   

10.
The magnetic and magnetocaloric properties of the R6Mn23 compounds (R=Y, Nd, Sm, Gd-Tm, Lu) are investigated from DC magnetization measurements. The results are analyzed and discussed in connection with previously published data. These binaries crystallize in the cubic Th6Mn23 type of structure (Fm-3m). The Mn sublattice orders at high temperature (398 K≤TC≤505 K) with a collinear ferrimagnetic structure. The R sublattice orders at lower temperature (<100 K) with a non-collinear arrangement. By opposition with the usual behaviour in intermetallics, light rare-earth compounds (R=Nd and Sm) have a lower ground state magnetization than the heavy rare-earth compounds (R=Gd-Tm). This manifests in their magnetocaloric response near the R ordering temperature: the compounds with R=Gd-Tm display a normal magnetocaloric effect of moderate magnitude (<50 mJ cm−3 K−1 for a field variation of 5 T) while those with R=Nd and Sm present an inverse magnetocaloric effect of weaker magnitude. The potential interest of these phases for cooling applications is briefly discussed.  相似文献   

11.
A series of R2Fe17 (R=Sm, Gd, Tb, Dy, Er) have been synthesized. The magnetocaloric effect (MCE) of these compounds has been investigated by means of magnetic measurements in the vicinity of their Curie temperature. The Curie temperature of Er2Fe17 is 294 K. The maximum magnetic entropy change of Er2Fe17 under 5 T magnetic field is ∼3.68 J/kg K. In the R2Fe17 (R=Sm, Gd, Tb, Dy, Er) system, the maximum magnetic entropy change under 1.5 T magnetic field is 1.72, 0.89, 1.32, 1.59, 1.68 J/kg K corresponding to their Curie temperature (400, 472, 415, 364, 294 K), respectively.  相似文献   

12.
A number of compounds of structural formula RRu4Sn6 (R=rare-earth element) have previously been reported to form in the tetragonal crystal structure with space group I4¯2m. In this structure the R atoms are well isolated from each other. We embarked on this study to investigate the physical properties and to compare with earlier results obtained on the strongly correlated, low charge-carrier density compound CeRu4Sn6. Here we report our results of crystallographic, electrical resistivity, and magnetic studies on this family of compounds. In contrast to the behaviour in CeRu4Sn6, magnetic ordering is evident at low temperatures in the compounds with R=Sm, Gd, and Dy, as is evidenced by well-resolved anomalies in the temperature dependence of the electrical resistivity and static magnetic susceptibility.  相似文献   

13.
Photoluminescent phosphors CaGa2S4: Eu2+, RE3+ (RE3+ including all rare earth ions except for Sc3+, Pm3+, Eu3+ and Lu3+) were prepared by sintering at high temperature in a reductive atmosphere, and their luminescent properties were studied intensively. The influences of co-doping rare earth ions on their luminescent properties were also investigated. No remarkable differences were found from excitation spectra of co-doped phosphors CaGa2S4: Eu2+, RE3+ in contrast with that of phosphor CaGa2S4: Eu2+, but there were a few differences in emission spectra of Ce3+, Pr3+ or Ho3+ co-doped phosphors. Phosphors CaGa2S4: Eu2+, RE3+ (RE=Ce, Pr, Gd, Tb, Ho and Y) had persistent afterglow, and very short afterglow was shown for Nd3+ or Er3+ co-doped phosphors, but no long afterglow appeared when auxiliary activator was La3+, Sm3+, Dy3+, Tm3+ or Yb3+. Among the phosphors with long-lasting phosphorescence, in our experiments, CaGa2S4: Eu2+, Ho3+ had the longest and the highest brightness long yellow afterglow. Thermo-luminescence of all co-doped phosphors was measured to find the answer of different influences from different rare earth auxiliary activators.  相似文献   

14.
Magnetic susceptibility measurements carried out on (Co,Zn)RE4W3O16 compounds revealed a disordered state of magnetic moments above 4.2 K for all compounds under study, and a weak response to magnetic field and temperature for ZnSm4W3O16 and ZnEu4W3O16 samples. The temperature independent component of magnetic susceptibility has a negative value for ZnGd4W3O16 and a positive one for the rest of the tungstates, indicating a domination of van Vleck contribution. The magnetization isotherms of majority of the tungstates under study revealed both spontaneous magnetic moments and hysteresis characteristic for the superparamagnetic-like behavior with blocking temperature TB∼30 K, except for ZnEu4W3O16. Fitting procedure of the Landé factor revealed that the stronger the orbital contribution, the weaker the superparamagnetic effect, namely for ZnRE4W3O16. In case of CoRE4W3O16 a significant participation of the Co2+ moment in the spontaneous magnetization was observed.  相似文献   

15.
Physical properties of NdAu2Ge2, crystallising with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric and electrical transport measurements as well as by neutron diffraction. The compound exhibits antiferromagnetic ordering below TN=4.5 K with a collinear magnetic structure of the AFI-type. The neodymium magnetic moments are parallel to the c-axis and amount to 1.04(4) μB at 1.5 K. The observed magnetic behaviour is strongly influenced by crystalline electric field effect.  相似文献   

16.
Fully dense nanocomposite magnets containing hard R2Fe14B and soft α-Fe phases were produced from both melt-spun and mechanically milled alloys by hot pressing and subsequent die upsetting. Although R-lean R–Fe–B alloys that do not contain the grain-boundary R-rich phase are known not to be susceptible to texture development by means of die upsetting, we found that small additions of Cu make the texturing possible. The resulting microstructure of oriented platelet grains is similar to that of the R-rich die-upset magnets. Properties of the Cu-containing R2Fe14B/α-Fe die-upset magnets can be further improved by adding Ga. The anisotropic Pr12Fe80Cu1Ga1B6 magnet made from mechanically milled alloy and containing 17.2 wt% α-Fe had a remanence of 13 kG and a maximum energy product of 23.4 MG Oe. The Pr11.25Fe80.75Cu1Ga1B6 magnet made from melt-spun alloy and containing 16.2 wt% α-Fe had a maximum energy product of 19.9 MG Oe. The low coercivity of 3–4 kOe typical for the Cu-containing R2Fe14B/α-Fe die-upset magnets is due to the relatively coarse α-Fe grains. The latter grains are too large for intergranular exchange interaction, but, nevertheless, they are well coupled with the R2Fe14B grains by a long-range magnetostatic interaction.  相似文献   

17.
A series of red phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) have been synthesized by sol-gel method. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA), and the properties of these resulting phosphors have also been characterized by photoluminescence (PL) spectra and reflectance spectra. Field emission scanning electron microscopy (FE-SEM) was also used to characterize the shape and the size of the samples. The results of TG-DTA and XRD indicated that all of the R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors crystallized completely at 650 °C. Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 have two structures, monoclinic and orthorhombic, while La0.8Eu1.2(MoO4)3 only adopts monoclinic structure. The luminescent properties of phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) are dependent on their structures to some extent. The orthorhombic Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 phosphors show very similar luminescent properties, which differ from those of phosphors with monoclinic structure. For all of R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors, intense red emission is obtained by exciting at ∼394 and ∼465 nm which are owing to the sharp 7F05L6 and 7F05D2 lines of Eu3+. Two strongest lines at 394 and 465 nm in excitation spectra of these phosphors match well with the two popular emissions from near-UV and blue GaN-based LEDs, so they could be used as red components for white light-emitting diodes.  相似文献   

18.
High-energy high-flux synchrotron X-rays have been used to study the spontaneous magnetostriction of R2Fe17 (R=Y, Nd, Gd, Tb, Er) and their carbides in the temperature range 10–1100 K. Addition of interstitial carbon greatly increases both the Curie temperatures (TC) and the spontaneous magnetostrain of the compounds, while reduces the anisotropy of the magnetostrain by expanding the distances between rare-earth and neighboring Fe sites. The increase of TC with carbon is due to the increased spatial separation of the Fe hexagon layers. On the basal plane, the Fe hexagons are squeezed and the contribution of Fe sublattice to spontaneous magnetostriction is attenuated, while that of rare-earth sublattice is enhanced. The average bond magnetostrain around Fe sites are in linear relation with their hyperfine field intensities.  相似文献   

19.
The magnetic properties of polycrystalline PrRh2Si2 sample have been investigated by neutron diffraction measurements. Antiferromagnetic transition with an anomalously high ordering temperature (TN∼68 K) is clearly observed in magnetic susceptibility, specific heat, electrical resistivity and neutron diffraction measurements. Neutron diffraction study shows that Pr3+ ions carry an ordered moment of 2.99(7)μB/Pr3+ and align along the crystallographic±c-directions for the ions located at the (0,0,0) and positions. The magnetoresistance at 2 K and 10 T is rather large (∼35%).  相似文献   

20.
Newly synthesized reference MgLaLiSi2O7 and red luminescent Eu3+:MgLaLiSi2O7 powder phosphors have been successfully developed by a solid-state reaction method to analyze their emission and structural properties from the measurement of their XRD, SEM, FTIR and PL spectra. Emission spectra of Eu3+ powder phosphors have shown strong red emissions at 613 nm (5D07F2). These phosphors have also shown bright red emissions under a UV source. Based on the red emission performance, the Eu3+ concentration has been optimized to be at 0.3 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号