首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulosic biomass is a promising alternative energy resource from the viewpoint of sustainability. The use of waste materials as cellulosic biomass could additionally contribute to a recycling society. It is thus essential to develop safer processes in order to expand utilization of cellulosic biomass as a useful resource in the future. For example, in some cases, construction wastes contain wood preservatives, including metal oxides that can act as catalysts for the oxidation of organic materials. Copper(II) oxide (CuO) is a major component in wood preservatives and is known to catalyze the oxidation of cellulose. There is, therefore, possibility for spontaneous ignition within large piles of wood chips from construction wastes. In this study, we focused on the thermal behavior of a cellulose/CuO mixture, measured using a Calvet-type heat flux calorimeter. In addition, Fourier transform infrared spectroscopy and gas chromatography were applied to analyze the oxidative decomposition gases of the cellulose/CuO mixture, and a reaction mechanism was proposed. It was revealed that CuO promotes the oxidative decomposition of cellulose and increases the quantity of the gases that evolved from cellulose with a catalytic cycle. The influence of CuO on oxidation of cellulose is greater at lower temperatures and spontaneous ignition, fires, and explosions are likely to increase when wood chips containing CuO are stored for long periods of time.  相似文献   

2.
采用程序升温氧化(TPO)技术和吸附 催化氧化循环实验,研究了金属担载量对CuO/AC催化-吸附剂干法催化氧化苯酚的影响。结果表明,随着金属担载量的增加,CuO/AC催化-吸附剂的苯酚催化氧化活性升高,并且苯酚与催化-吸附剂之间的相互作用增强,使吸附的苯酚不易脱附/降解脱附。同时,CuO/AC催化 吸附剂自身的烧蚀活性也随金属担载量的增加而升高。对于吸附-干法催化氧化法而言,CuO/AC存在一个较佳的金属担载量范围,该范围以Cu的质量分数计为3%~5%。  相似文献   

3.
二氧化钛负载氧化物催化剂上CO的氧化反应   总被引:4,自引:1,他引:3  
对浸渍法和共沉淀法制备以的各种TiO2负载氧化物催化剂进行了活性组分的筛选,结果发现,两种方法得到的CuO催化剂均具有优良的CO氧化催化性能。在此基础上,考察不同TiO2载体,活性组分含量以及催化剂焙烧温度对其催化能力的影响。结果表明,具有高比表面、大孔体积的TiO2载体负功的CuO催化剂具有较好的催化性能,活性组分CuO的最佳含量范围在10%~15%之间,催化剂最佳焙烧温度为400℃。  相似文献   

4.
CuO nanoparticle was synthesized via wet chemical method and was characterized by X-ray diffraction(XRD),nitrogen adsorption-desorption,and scanning electron microscopy(SEM).Catalytic oxidation of cumene with molecular oxygen was studied over CuO nanoparticle.The catalysts showed markedly higher activities as compared to CuO prepared by conventional method,CuO/Al_2O_3,or ho- mogeneous copper catalyst under comparable reaction conditions.The cumene conversion,comene hy- droperoxide(CHP)yield,and selectivity using 0.25 g CuO nanoparticle catalyst and 0.1 mol cumene at 358 K for 7 h were 44.2%,41.2% and 93.2%,respectively.The catalyst can be recycled.After 6 recycled experiments,no loss of catalytic activity was observed.  相似文献   

5.
Ammonium nitrate (AN) has been extensively used as an oxidizer in energetic compositions, and is a promising compound as a propellant and gas generator. It is well-known that metal oxides help to address some of the disadvantages of AN, such as low stability and a low burning rate in these applications. In order to investigate the effects of copper(II) oxide (CuO) on the thermal decompostion of AN mixtures, the thermal characteristics of AN, carbon, and CuO mixtures were measured using simultaneous differential scanning calorimetry and thermogravimetry–differential thermal analysis connected with infrared spectroscopy and mass spectrometry. As a combustible material, activated carbon (AC), and carbon black (CB) were used in this study. In the TG–DTA results for AN/AC/CuO and AN/CB/CuO mixtures in an open cell, an exotherm was observed at approximately 210 and 230 °C, respectively. In addition, the IR and mass spectra of the gases produced from the AN/AC/CuO and AN/CB/CuO mixtures indicated the presence of CO2. Notably, the effect of CuO addition on the oxidation of the AN/AC/CuO mixture was different from that on the AN/CB/CuO mixture; the oxidation of AC shifted to a lower temperature, while the oxidation of CB shifted to a higher temperature. These results suggest that the effect of CuO on the oxidation of different types of carbon depends on the chemical reactivity of the carbon, which is derived from its physical properties.  相似文献   

6.
CuO-NiO/SiO2催化氧化1-甲氧基-2-丙醇合成甲氧基丙酮   总被引:6,自引:0,他引:6  
 采用浸渍法制备了CuO-NiO/SiO2负载型催化剂.以空气为氧源,对CuO-NiO/SiO2催化体系催化氧化1-甲氧基-2-丙醇合成甲氧基丙酮反应的催化活性进行了考察.实验结果表明,NiO组分的负载量对催化活性影响较大;NiO和CuO两者之间有很强的协同催化效应.TPR和XRD结果表明,添加镍组分可促进铜在载体表面上分散,使氧化物还原温度降低,提高催化活性.在优化条件下,1-甲氧基-2-丙醇的转化率可达74.3%,甲氧基丙酮的收率可达63%.  相似文献   

7.
研究了氧化铜的加入对锆铈复合氧化物的结构与性能的影响 ,发现氧化铜的加入可降低氧化铈的还原温度 ,稳定复合氧化物的立方结构 ,提高对CO氧化的催化活性。增加铈含量能提高催化剂的活性 ,而硫酸盐等可使催化剂的活性降低。掺铜锆铈复合氧化物催化剂的活性几乎不受高温灼烧的影响 ,是一种具有较高热稳定性的催化剂。  相似文献   

8.
Heterogeneous Cu-Mn mixed oxides can mediate TEMPO-catalyzed selective oxidation of benzyl alcohol by molecular oxygen under neutral condition, and is recyclable. In the case of the molar ratio of Cu and Mn over 1, the highly-dispersed CuO inside the Cu-Mn mixed oxides is responsible for the good performances in catalytic oxidation.  相似文献   

9.
Heterogeneous Cu-Mn mixed oxides can mediate TEMPO-catalyzed selective oxidation of benzyl alcohol by molecular oxygen under neutral condition, and is recyclable. In the case of the molar ratio of Cu and Mn over 1, the highly-dispersed CuO inside the Cu-Mn mixed oxides is responsible for the good performances in catalytic oxidation.  相似文献   

10.
An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C? H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C? C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates.  相似文献   

11.
An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates.  相似文献   

12.
This review deals with the use of solid catalysts for the enhancement of the efficiency and the development of a new generation of environmentally friendly, energy and resource efficient processes for the deep processing of lignocellulosic biomass to desired chemicals. The oxidative delignification of wood with hydrogen peroxide in the presence of the suspended TiO2 catalyst, the oxidation of wood with molecular oxygen in the presence of copper catalysts, the acidcatalyzed conversion of cellulose to glucose and levulinic acid, and the thermal conversion of lignin to fuel additives on solid acid catalysts are analyzed. New integrated processes based on the heterogeneous catalytic oxidation are suitable for the complex processing of lignocellulosic biomass to produce valuable chemicals and engine fuel components without the use of toxic and corrosion-active reagents.  相似文献   

13.
Various cellulose II samples, ball-milled native celluloses and ball-milled wood saw dust were subjected to 2,2,6,6-tetramethypyperidine-1-oxyl radical (TEMPO)-mediated oxidation to prepare cellouronic acid Na salts (CUAs). The TEMPO-oxidized products obtained were analyzed by 13C-NMR and size-exclusion chromatography (SEC). When the cellulose II samples with degrees of polymerization (DP) of 220–680 were used as the starting materials, the CUAs obtained had weight-average DP (DPw) values of only 38–79. Thus, significant depolymerization occurs on cellulose chains during the TEMPO-mediated oxidation. These DP values of CUAs correspond to the cellulose II crystal sizes along the chain direction in the original cellulose II samples, but not necessarily to their leveling-off DP values. CUAs can be obtained also from ball-milled native celluloses in good yields by TEMPO-mediated oxidation, although their DPw values are lower than about 80. On the other hand, CUA with DPw of about 170 was obtained from ball-milled wood saw dust.  相似文献   

14.
The effect of chemical structures of TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxy radical) derivatives and its analogous compounds on oxidation efficiency of C6 primary hydroxyls of wood cellulose was investigated using the NaClO/NaBr system at pH 10. Because the oxidation takes place selectively on the surfaces of cellulose microfibrils, individualized and surface-oxidized cellulose nanofibrils can be obtained by simple mechanical treatment in water, when sufficient amounts of carboxylate groups are formed homogeneously in cellulose microfibrils. 4-acetamide-TEMPO and 4-methoxy-TEMPO showed efficient catalytic behavior with short reaction times (<4 h) and high carboxylate contents (>1.1 mmol/g) in oxidation of wood cellulose, comparable to TEMPO. Correspondingly, these TEMPO derivatives as well as TEMPO gave high nanofibril yields >56%. On the other hand, the use of 4-hydroxy-TEMPO and 4-oxo-TEMPO resulted in the lowest efficiency in oxidation: oxidation times >24 h, carboxylate contents <0.3 mmol/g, and individualized and surface-oxidized nanofibril yields <2%.  相似文献   

15.
氧化铈气凝胶担载氧化铜催化剂上的一氧化碳氧化   总被引:15,自引:1,他引:15  
 以一氧化碳氧化为探针反应,考察了氧化铈气凝胶担载氧化铜催化剂的催化活性,研究了催化剂中氧化铜的含量、载体及催化剂的焙烧温度对催化剂活性的影响.结果表明,氧化铈气凝胶担载的氧化铜催化剂对一氧化碳氧化反应呈现出高催化活性,适当温度下焙烧载体及催化剂有利于提高催化剂的催化活性;随着催化剂中氧化铜含量的增加,一氧化碳完全转化的温度降低,但当w(CuO)>12%时,过量的氧化铜以体相形式而不是以高分散形式存在,对催化剂活性的影响很小.  相似文献   

16.
以环氧丙烷为凝胶剂,采用简便低廉的无表面活性剂的溶胶-凝胶法制备了一系列不同Cu/Fe摩尔比的高比表面积介孔Fe-Cu复合氧化物纳米粉末。运用微反应器-色谱体系考察了它们在低温CO氧化反应中的催化性能。采用X射线衍射、N2吸附-脱附、热重-差热分析、程序升温还原、傅里叶变换红外光谱和透射电镜对所制样品进行了表征。结果表明,这些介孔Fe-Cu复合氧化物催化剂具有纳米晶结构、窄的孔径分布和高的比表面积,在低温CO氧化反应中表现出高的活性和稳定性。 CuO的添加影响了Fe2O3的结构和催化性能。当CuO含量为15 mol%时,催化剂具有最高的比表面积和催化活性,在低温CO氧化反应中表现出较高的催化稳定性。  相似文献   

17.
Yellow poplar wood sawdust consists of 41% cellulose and 19% hemicellulose. The goal of pressure cooking this material in water is to hydrate the more chemically resistive regions of cellulose in order to enhance enzymatic conversion to glucose. Pretreatment can generate organic acids through acid-catalyzed degradation of monosaccharides formed because of acids released from the biomass material or the inherent acidity of the water at temperatures above 160°C. The resulting acids will further promote the acid-catalyzed degradation of monomers that cause both a reduction in the yield and the formation of fermentation inhibitors such as hydroxymethyl furfural and furfural. A continuous pH-monitoring system was developed to help characterize the trends in pH during pretreatment and to assist in the development of a base (2.0 M KOH) addition profile to help keep the pH within a specified range in order to reduce any catalytic degradation and the formation of any monosac-charide degradation products during pretreatment. The results of this work are discussed.  相似文献   

18.
In this paper, we report on the amino acids-/citric acid-/tartaric acid-assisted morphologically controlled hydrothermal synthesis of micro-/nanostructured crystalline copper oxides (CuO). These oxides were characterized by means of X-ray diffraction, nitrogen sorption, scanning electron microscopy, Fourier transform infrared, and UV-visible spectroscopy. The surface area of metal oxides depends on the amino acid used in the synthesis. The formation mechanisms were proposed based on the experimental results, which show that amino acid/citric acid/tartaric acid and hydrothermal time play an important role in tuning the morphology and structure of CuO. The catalytic activity of as-synthesized CuO was demonstrated by catalytic oxidation of methylene blue in the presence of hydrogen peroxide (H(2)O(2)). CuO synthesized using tyrosine was found to be the best catalyst compared to a variety of CuO synthesized in this study. CuO (synthesized in this study)-modified electrodes were used for the construction of non-enzymatic sensors, which displayed excellent electrocatalytic response for the detection of H(2)O(2) and glucose compared to conventional CuO. The high electrocatalytic response observed for the CuO synthesized using tyrosine can be correlated with the large surface area, which enhances the accessibility of H(2)O(2)/glucose molecule to the active site that results in high observed current. The methodology adopted in the present study provides a new platform for the fabrication of CuO-based high-performance glucose and other biosensors.  相似文献   

19.
Cellulose nanofibrils were prepared by mechanical fibrillation of never-dried beech pulp and bacterial cellulose. To facilitate the separation of individual fibrils, one part of the wood pulp was surface-carboxylated by a catalytic oxidation using (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as a catalyst. After fibrillation by a high pressure homogenizer, the obtained aqueous fibril dispersions were directly mixed with different urea–formaldehyde-(UF)-adhesives. To investigate the effect of added cellulose filler on the fracture mechanical properties of wood adhesive bonds, double cantilever beam specimens were prepared from spruce wood. While the highest fracture energy values were observed for UF-bonds filled with untreated nanofibrils prepared from wood pulp, bonds filled with TEMPO-oxidized fibrils showed less satisfying performance. It is proposed that UF-adhesive bonds can be significantly toughened by the addition of only small amounts of cellulose nanofibrils. Thereby, the optimum filler content is largely depending on the adhesive and type of cellulose filler used.  相似文献   

20.
Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号