首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we present a systematic density functional theory study of the electronic properties of single-walled carbon nanotubes (SWNT) with diameters ranging from 3 to 5 A. In this work meta-generalized-gradient approximation, hybrid, and screened exchange hybrid functionals are utilized to compute energy band gaps in these narrow SWNT. Our calculations using hybrid functionals show that the only true exceptions to the zone folding predictions are the (4,0) and (5,0) SWNT. The remaining chiral SWNT are semiconducting with band gaps that can be as large as 1.7 eV. However, the calculated energy band gaps are significantly smaller than those predicted by the zone folding scheme. This difference is primarily attributed to the sigma-pi hybridization present in such narrow SWNT.  相似文献   

2.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

3.
We report how closely the Kohn-Sham highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) eigenvalues of 11 density functional theory (DFT) functionals, respectively, correspond to the negative ionization potentials (-IPs) and electron affinities (EAs) of a test set of molecules. We also report how accurately the HOMO-LUMO gaps of these methods predict the lowest excitation energies using both time-independent and time-dependent DFT (TD-DFT). The 11 DFT functionals include the local spin density approximation (LSDA), five generalized gradient approximation (GGA) functionals, three hybrid GGA functionals, one hybrid functional, and one hybrid meta GGA functional. We find that the HOMO eigenvalues predicted by KMLYP, BH&HLYP, B3LYP, PW91, PBE, and BLYP predict the -IPs with average absolute errors of 0.73, 1.48, 3.10, 4.27, 4.33, and 4.41 eV, respectively. The LUMOs of all functionals fail to accurately predict the EAs. Although the GGA functionals inaccurately predict both the HOMO and LUMO eigenvalues, they predict the HOMO-LUMO gap relatively accurately (approximately 0.73 eV). On the other hand, the LUMO eigenvalues of the hybrid functionals fail to predict the EA to the extent that they include HF exchange, although increasing HF exchange improves the correspondence between the HOMO eigenvalue and -IP so that the HOMO-LUMO gaps are inaccurately predicted by hybrid DFT functionals. We find that TD-DFT with all functionals accurately predicts the HOMO-LUMO gaps. A linear correlation between the calculated HOMO eigenvalue and the experimental -IP and calculated HOMO-LUMO gap and experimental lowest excitation energy enables us to derive a simple correction formula.  相似文献   

4.
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (SN2) reactions involving, amongst others, nucleophilic attack at carbon, nitrogen, silicon, and sulfur. In particular, we investigate the ability of the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA as well as hybrid DFT to reproduce high-level coupled cluster (CCSD(T)) benchmarks that are close to the basis set limit. The most accurate GGA, meta-GGA, and hybrid functionals yield mean absolute deviations of about 2 kcal/mol relative to the coupled cluster data, for reactant complexation, central barriers, overall barriers as well as reaction energies. For the three nonlocal DFT classes, the best functionals are found to be OPBE (GGA), OLAP3 (meta-GGA), and mPBE0KCIS (hybrid DFT). The popular B3LYP functional is not bad but performs significantly worse than the best GGA functionals. Furthermore, we have compared the geometries from several density functionals with the reference CCSD(T) data. The same GGA functionals that perform best for the energies (OPBE, OLYP), also perform best for the geometries with average absolute deviations in bond lengths of 0.06 A and 0.6 degrees, even better than the best meta-GGA and hybrid functionals. In view of the reduced computational effort of GGAs with respect to meta-GGAs and hybrid functionals, let alone coupled cluster, we recommend the use of accurate GGAs such as OPBE or OLYP for the study of SN2 reactions.  相似文献   

5.
6.
The predicted structures and electronic properties of CeO(2) and Ce(2)O(3) have been studied using conventional and hybrid density functional theory. The lattice constant and bulk modulus for CeO(2) from local (LSDA) functionals are in good agreement with experiment, while the lattice parameter from a generalized gradient approximation (GGA) is too long. This situation is reversed for Ce(2)O(3), where the LSDA lattice constant is much too short, while the GGA result is in reasonable agreement with experiment. Significantly, the screened hybrid HSE functional gives excellent agreement with experimental lattice constants for both CeO(2) and Ce(2)O(3). All methods give insulating ground states for CeO(2) with gaps for the 4f band lying between 1.7 eV (LSDA) and 3.3 eV (HSE) and 6-8 eV for the conduction band. For Ce(2)O(3) the local and GGA functionals predict a semimetallic ground state with small (0-0.3 eV) band gap but weak ferromagnetic coupling between the Ce(+3) centers. By contrast, the HSE functional gives an insulating ground state with a band gap of 3.2 eV and antiferromagnetic coupling. Overall, the hybrid HSE functional gives a consistent picture of both the structural and electronic properties of CeO(2) and Ce(2)O(3) while treating the 4f band consistently in both oxides.  相似文献   

7.
We present results of molecular electronic structure treatments of multireference configuration interaction (MRCI) type for clusters Al(n) and Sn(n) in the range up to n = 4, and of coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) type in the range up to n = 10. Basis sets of quadruple zeta size are employed, computed energy differences, such as cohesive energies, E(coh), or dissociation energies for the removal of a single atom, D(e), differ from the complete basis set limit by only a few 0.01 eV. MRCI and CCSD(T) results are then compared to those obtained from density functional theory (DFT) treatments, which show that all computational procedures agree with the general features of D(e) and E(coh). The best agreement of DFT with CCSD(T) is found for the meta-GGA (generalized gradient approximation) TPSS (Tao, Perdew, Staroverov, Scuseria) for which D(e) differs from CCSD(T) by at most 0.15 eV for Al(n) and 0.21 eV for Sn(n). The GGA PBE (Perdew, Burke, Ernzerhof) is slightly poorer with maximum deviations of 0.23 and 0.24 eV, whereas hybrid functionals are not competitive with GGA and meta-GGA functionals. A general conclusion is that errors of D(e) and/or energy differences of isomers computed with DFT procedures may easily reach 0.2 eV and errors for cohesive energies E(coh) 0.1 eV.  相似文献   

8.
We propose a data set of bond lengths for 8 selected transition metal dimers (Ag(2), Cr(2), Cu(2), CuAg, Mo(2), Ni(2), V(2), and Zr(2)) and another data set containing their atomization energies and the atomization energy of ZrV, and we use these for testing density functional theory. The molecules chosen for the test sets were selected on the basis of the expected reliability of the data and their ability to constitute a diverse and representative set of transition element bond types while the data sets are kept small enough to allow for efficient testing of a large number of computational methods against a very reliable subset of experimental data. In this paper we test 42 different functionals: 2 local spin density approximation (LSDA) functionals, 12 generalized gradient approximation (GGA) methods, 13 hybrid GGAs, 7 meta GGA methods, and 8 hybrid meta GGAs. We find that GGA density functionals are more accurate for the atomization energies of pure transition metal systems than are their meta, hybrid, or hybrid meta analogues. We find that the errors for atomization energies and bond lengths are not as large if we limit ourselves to dimers with small amounts of multireference character. We also demonstrate the effects of increasing the fraction of Hartree-Fock exchange in multireference systems by computing the potential energy curve for Cr(2) and Mo(2) with several functionals. We also find that BLYP is the most accurate functional for bond energies and is reasonably accurate for bond lengths. The methods that work well for transition metal bonds are found to be quite different from those that work well for organic and other main group chemistry.  相似文献   

9.
10.
We present a periodic density functional theory investigation of twoproton‐ordered phases of ice. Their equilibrium lattice parameters,relative stabilities, formation energies, and densities of states havebeen evaluated. Nine exchange‐correlation functionals, representativeof the generalized gradient approximation (GGA), global hybrids,range‐separated hybrids, meta‐GGA, and hybrid meta‐GGA families havebeen taken into account, considering two oxygen basis sets. Althoughthe hydrogen‐bond network of ice is well reproduced at the B3LYP,M06‐L, or LC‐ wPBE levels, formation energies are only correctlyevaluated with the two former functionals. Band gaps on the other handare only quantitatively reproduced at the B3LYP level. These resultsindicate that this last functional, a de facto reference formolecular calculations, gives in average the most accurate results forthe considered ice properties. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

11.
Early transition metal dichalcogenides (TMDC), characterized by their quasi-two-dimensional layered structure, have attracted intensive interest due to their versatile chemical and physical properties, but a comprehensive understanding of their structural and electronic properties from a first-principles point of view is still lacking. In this work, four simple TMDC materials, MX(2) (M = Zr and Hf, X = S and Se), are investigated by the Kohn-Sham density functional theory (KS-DFT) with different local or semilocal exchange-correlation (xc) functionals and many-body perturbation theory in the GW approximation. Although the widely used Perdew-Burke-Ernzelhof (PBE) generalized gradient approximation (GGA) xc functional overestimates the interlayer distance dramatically, two newly developed GGA functionals, PBE-for-solids (PBEsol) and Wu-Cohen 2006 (WC06), can reproduce experimental crystal structures of these TMDC materials very well. The GW method, currently the most accurate first-principles approach for electronic band structures of extended systems, gives the fundamental band gaps of all these materials in good agreement with the experimental values obtained from optical absorption. The minimal direct gaps from GW are systematically larger than those measured from thermoreflectance by about 0.1-0.3 eV, implying that excitonic effects may be stronger than previously estimated. The calculated density of states from GW quasi-particle band energies agrees very well with photo-emission spectroscopy data. Ionization potentials of these materials are also computed by combining PBE calculations based on the slab model and GW quasi-particle corrections. The calculated absolute band energies with respect to the vacuum level indicate that that ZrS(2) and HfS(2), although having suitable band gaps for visible light absorption, cannot be used for overall water splitting as a result of mismatch of the conduction band minimum with the redox potential of H(+)/H(2).  相似文献   

12.
The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized‐gradient approximation (GGA), nonlocal correlation, meta‐GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised‐RPBE, vdW‐DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW‐DF and meta‐GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of ?2.62 and ?1.1% for the N? N stretching and Rh? H stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the Rh? H and N? N stretching modes from the bulk phonons and by solving one‐ and two‐dimensional Schrödinger equation associated with the Rh? H, Rh? N, and N? N potential energy we calculated the anharmonic correction for N? N and Rh? H stretching modes as ?31 cm?1 and ?77 cm?1 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
14.
We have evaluated the performance of various density functionals, covering generalized gradient approximation (GGA), global hybrid (GH) and range-separated hybrid (RSH), using time dependent density functional theory (TDDFT) for computing vertical excitation energies against experimental absorption maximum (λmax) for a set of 10 different core-substituted naphthalene diimides (cNDI) recorded in dichloromethane. The computed excitation in case of GH PBE0 is most accurate while the trend is most systematic with RSH LCY-BLYP compared to λmax. We highlight the importance of including solvent effects for optimal agreement with the λmax. Increasing the basis set size from TZ2P to QZ4P has a negligible influence on the computed excitation energies. Notably, RSH CAMY-B3LYP gave the least error for charge-transfer excitation. The poorest agreement with λmax is obtained with semi-local GGA functionals. Use of the optimally-tuned RSH LCY-BLYP* is not recommended because of the high computational cost and marginal improvement in results.  相似文献   

15.
The performance of 24 density functionals, including 14 meta-generalized gradient approximation (mGGA) functionals, is assessed for the calculation of vertical excitation energies against an experimental benchmark set comprising 14 small- to medium-sized compounds with 101 total excited states. The experimental benchmark set consists of singlet, triplet, valence, and Rydberg excited states. The global-hybrid (GH) version of the Perdew-Burke-Ernzerhoff GGA density functional (PBE0) is found to offer the best overall performance with a mean absolute error (MAE) of 0.28 eV. The GH-mGGA Minnesota 2006 density functional with 54% Hartree-Fock exchange (M06-2X) gives a lower MAE of 0.26 eV, but this functional encounters some convergence problems in the ground state. The local density approximation functional consisting of the Slater exchange and Volk-Wilk-Nusair correlation functional (SVWN) outperformed all non-GH GGAs tested. The best pure density functional performance is obtained with the local version of the Minnesota 2006 mGGA density functional (M06-L) with an MAE of 0.41 eV.  相似文献   

16.
We present a database of 21 bond dissociation energies for breaking metal-ligand bonds. The molecules in the metal-ligand bond energy database are AgH, CoH, CoO+, CoOH+, CrCH3+, CuOH2+, FeH, Fe(CO)5, FeO, FeS, LiCl, LiO, MgO, MnCH3NiCH2+, Ni(CO)4, RhC, VCO+, VO, and VS. We have also created databases of metal-ligand bond lengths and atomic ionization potentials. The molecules used for bond lengths are AgH, BeO, CoH, CoO+, FeH, FeO, FeS, LiCl, LiO, MgO, RhC, VO, and VS and the ionization potentials are for the following atoms: C, Co, Cr, Cu, Ni, O, and V. The data were chosen based on their diversity and expected reliability, and they are used along with three previously developed databases (transition metal dimer bond energies and bond lengths and main-group molecular atomization energies) for assessing the accuracy of several kinds of density functionals. In particular, we report tests for 42 previously defined functionals: 2 local spin density approximation (LSDA) functionals, 14 generalized gradient approximation (GGA) methods, 13 hybrid GGA methods, 7 meta GGA methods, and 8 hybrid meta GGA methods. In addition to these functionals, we also examine the effectiveness of scaling the correlation energy by testing 13 functionals with scaled or no gradient-corrected correlation energy, and we find that functionals of this kind are more accurate for metal-metal and metal-ligand bonds than any of the functionals already in the literature. We also present a readjusted GGA and a hybrid GGA with parameters adjusted for metals. When we consider these 57 functionals for metal-ligand and metal-metal bond energies simultaneously with main-group atomization energies, atomic ionization potentials, and bond lengths we find that the most accurate functional is G96LYP, followed closely by MPWLYP1M (new in this article), XLYP, BLYP, and MOHLYP (also new in this article). Four of these five functionals have no Hartree-Fock exchange, and the other has only 5%. As a byproduct of this work we introduce a convenient diagnostic, called the B1 diagnostic, for ascertaining the multireference character in a bond.  相似文献   

17.
The theoretical determination of electric response properties of the biological systems is a field where the application of density functional theory (DFT) appears to be quite promising. In this work, the performance of 41 density functional methods is evaluated in predicting dynamic polarizabilities of an experimental benchmark set of 20 proteinogenic amino acids. The behavior of a large number of density functionals, including various types of the local spin density approximation (LSDA), generalized gradient approximation (GGA), meta‐GGA (m‐GGA), hybrid‐GGA (h‐GGA), hybrid meta‐GGA (hm‐GGA), and range‐separated hybrid‐GGA (rsh‐GGA), has been assessed for the purpose. Analyzing the results of our DFT benchmarking, we found that these computationally economical methods show very diverse predictive capability and a careful selection of DFT functionals is very important in the polarizability calculations. Considering the role of exchange, correlation, dispersion and long‐range corrections, it turned out that in the LSDA class, SVWN3 gives better results than SPL and SVWN5 toward the reference values. Of the GGA methods, OPBE outperforms all other functionals. The M06‐L is the best method of m‐GGA class. The B3LYP and TPSSh are the best functionals of h‐GGA and hm‐GGA lineages, respectively. Finally, CAM‐B3LYP is the best method of rsh‐GGA functionals that predicts the most accurate polarizability for amino acids by a large margin with respect to others. Overall, the best performing functionals turn out to be hm‐GGAs TPSSh, TPSS1KCIS, M05, tau‐HCTHhyb, and h‐GGA B3LYP. Hopefully, the results of this investigation might provide the useful guidance to propose a new exchange‐correlation functional for calculating the optical properties of biomolecular materials. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential V xc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals E xc. For the 24 atoms, the two best E xc functional providing DIEs with average absolute deviation (AAD) of only 0.25 eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29 molecules. The best E xc functional for the 29 molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29 molecules is just under 0.5 eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.3(2) eV. Many other hybrid functionals perform almost as well.  相似文献   

19.
The electronic structure of iron phthalocyanine (FePc) in the valence region was examined within a joint theoretical-experimental collaboration. Particular emphasis was placed on the determination of the energy position of the Fe 3d levels in proximity of the highest occupied molecular orbital (HOMO). Photoelectron spectroscopy (PES) measurements were performed on FePc in gas phase at several photon energies in the interval between 21 and 150 eV. Significant variations of the relative intensities were observed, indicating a different elemental and atomic orbital composition of the highest lying spectral features. The electronic structure of a single FePc molecule was first computed by quantum chemical calculations by means of density functional theory (DFT). The hybrid Becke 3-parameter, Lee, Yang and Parr (B3LYP) functional and the semilocal 1996 functional of Perdew, Burke and Ernzerhof (PBE) of the generalized gradient approximation (GGA-)type, exchange-correlation functionals were used. The DFT/B3LYP calculations find that the HOMO is a doubly occupied π-type orbital formed by the carbon 2p electrons, and the HOMO-1 is a mixing of carbon 2p and iron 3d electrons. In contrast, the DFT/PBE calculations find an iron 3d contribution in the HOMO. The experimental photoelectron spectra of the valence band taken at different energies were simulated by means of the Gelius model, taking into account the atomic subshell photoionization cross sections. Moreover, calculations of the electronic structure of FePc using the GGA+U method were performed, where the strong correlations of the Fe 3d electronic states were incorporated through the Hubbard model. Through a comparison with our quantum chemical calculations we find that the best agreement with the experimental results is obtained for a U(eff) value of 5 eV.  相似文献   

20.
Double-hybrid density functionals are based on a mixing of standard generalized gradient approximations (GGAs) for exchange and correlation with Hartree-Fock (HF) exchange and a perturbative second-order correlation part (PT2) that is obtained from the Kohn-Sham (GGA) orbitals and eigenvalues. This virtual orbital-dependent functional (dubbed B2PLYP) contains only two empirical parameters that describe the mixture of HF and GGA exchange (ax) and of the PT2 and GGA correlation (ac), respectively. Extensive testing has recently demonstrated the outstanding accuracy of this approach for various ground state problems in general chemistry applications. The method is extended here without any further empirical adjustments to electronically excited states in the framework of time-dependent density functional theory (TD-DFT) or the closely related Tamm-Dancoff approximation (TDA-DFT). In complete analogy to the ground state treatment, a scaled second-order perturbation correction to configuration interaction with singles (CIS(D)) wave functions developed some years ago by Head-Gordon et al. [Chem. Phys. Lett. 219, 21 (1994)] is computed on the basis of density functional data and added to the TD(A)-DFTGGA excitation energy. The method is implemented by applying the resolution of the identity approximation and the efficiency of the code is discussed. Extensive tests for a wide variety of molecules and excited states (of singlet, triplet, and doublet multiplicities) including electronic spectra are presented. In general, rather accurate excitation energies (deviations from reference data typically <0.2 eV) are obtained that are mostly better than those from standard functionals. Still, systematic errors are obtained for Rydberg (too low on average by about 0.3 eV) and charge-transfer transitions but due to the relatively large ax parameter (0.53), B2PLYP outperforms most other functionals in this respect. Compared to conventional HF-based CIS(D), the method is more robust in electronically complex situations due to the implicit account of static correlation effects by the GGA parts. The (D) correction often works in the right direction and compensates for the overestimation of the transition energy at the TD level due to the elevated fraction of HF exchange in the hybrid GGA part. Finally, the limitations of the method are discussed for challenging systems such as transition metal complexes, cyanine dyes, and multireference cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号