首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对炭泡沫为支撑骨架的氧化硅气凝胶(SiO2/炭泡沫)和碳化硅(SiC/炭泡沫)复合材料分别采用XRD、SEM、激光导热仪、万能力学试验机进行物相、微观结构、热学及力学性能方面的表征。结果表明:所制备的SiO2/炭泡沫与原炭泡沫相比,具备更高的抗压强度(14.95MPa)和更低的室温热导率(0.44W·m-1·K-1)。SiC/炭泡沫材料则保持了较高的抗压强度值(14.66MPa),其在1200℃下具备极低的高温热导率(2.18W·m-1·K-1)。热重分析表明,SiC/炭泡沫在氧化氛围中到610℃才发生质量的损失,而内部炭发生完全烧蚀的温度高达844℃,这表明该材料的抗氧化性能远好于纯的炭泡沫材料。  相似文献   

2.
对炭泡沫为支撑骨架的氧化硅气凝胶(SiO2/炭泡沫)和碳化硅(SiC/炭泡沫)复合材料分别采用XRD、SEM、激光导热仪、万能力学试验机进行物相、微观结构、热学及力学性能方面的表征.结果表明:所制备的SiO2/炭泡沫与原炭泡沫相比,具备更高的抗压强度(14.95 MPa)和更低的室温热导率(0.44 W·m-1·K-1).SiC/炭泡沫材料则保持了较高的抗压强度值(14.66 MPa),其在 1 200 ℃下具备极低的高温热导率(2.18W·m-1·K-1).热重分析表明,SiC/炭泡沫在氧化氛围中到610 ℃才发生质量的损失,而内部炭发生完全烧蚀的温度高达844 ℃,这表明该材料的抗氧化性能远好于纯的炭泡沫材料.  相似文献   

3.
以煤基碳泡沫(CCF)作为骨架材料来封装改性固-固相变材料聚氨酯(PU),并实现其功能化应用。使用场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射仪(PXRD)、傅里叶变换红外(FT-IR)光谱仪、热重分析仪(TGA)、差示扫描量热(DSC)分析仪、热导测试仪对所得到的复合材料(PU@CCF)进行结构和特性表征。结果显示,聚乙二醇(PEG-6000)与异氰酸酯(HDI)反应制备聚氨酯的最优摩尔比例为1:2,煤基碳泡沫可以很好地阻止聚氨酯从复合材料中泄露出来。相较于聚乙二醇,复合材料的导热率上升了54%,经过200次热循环,复合材料保持了良好的稳定性,而且其相变主体材料PU的过冷度降低了10℃以上。基于碳泡沫骨架良好的导电性,加载高于0.8V的低电压就可实现聚氨酯电热相变储能,在1.1V电压驱动下,其电热转换效率可达75%。该工作是目前报道的最低电压下可实现电热相变转换的复合功能材料,为实现低成本相变复合材料的制备与功能化提供重要参考。  相似文献   

4.
首先,采用三-(2-羟乙基)异氰酸脲酯(THIEC)作为增韧剂对三聚氰胺甲醛树脂(蜜胺树脂)进行化学改性,以提高树脂的韧性。然后,将改性蜜胺树脂与表面活性剂、发泡剂、固化剂、成核剂等充分混合搅拌,采用普通热发泡法制得三聚氰胺甲醛树脂泡沫(蜜胺泡沫)。用扫描电子显微镜(SEM)、氧指数仪、万能电子试验机、导热系数仪对蜜胺泡沫的形态结构、阻燃性能、力学性能及热绝缘性能进行了测试和分析。探究了发泡剂、固化剂用量对蜜胺泡沫表观密度及形态的影响。结果表明:当THIEC、发泡剂、固化剂、成核剂的用量依次为蜜胺树脂质量的15%、10%、6%、2%,发泡温度为80℃时,蜜胺泡沫的压缩强度达到150kPa、极限氧指数为34、导热系数为0.027W/(m·K),综合性能良好。  相似文献   

5.
原位缩聚制备聚氨酯/碳纳米管复合泡沫材料   总被引:1,自引:0,他引:1  
采用球磨方法制备了均匀分散的碳纳米管(CNTs)/聚丙二醇分散体系,解决了碳纳米管在高黏滞聚醚醇中的分散问题,进一步以水为发泡剂,采用两步的原位缩聚法制备了碳纳米管均匀分散的聚氨酯(PU)/碳纳米管复合泡沫材料.通过FTIR、SEM、压缩实验、亲水性实验等表征了材料的结构和性能.结果表明碳纳米管的加入使聚氨酯材料的压缩强度和保水率得到显著提高.  相似文献   

6.
在聚氨酯(PU)制备过程中,加入球磨法制备得到的氮化硼纳米片(BNNS)分散液,制备PU/BNNS复合材料体系。采用X-射线衍射、傅里叶红外光谱和扫描电子显微镜对样品的分子结构和微观形貌进行表征,并考察样品的力学性能、形状记忆性能和自修复性能。结果表明:BNNS引入后,复合材料的力学性能得到显著提升。当加入BNNS含量为0.5 wt%时,拉伸强度达到14.8±1.5 MPa,比纯PU提升了138.7%。BNNS具有良好导热性能,能改善复合材料的形状记忆性能。在引入BNNS后,复合材料的形状固定率、形状回复率均能得到提高。  相似文献   

7.
本文以聚乙二醇(PEG)为相变材料,通过添加不同的无机填料,采用熔融共混浇筑方式制备了导热增强型相变复合材料。 通过扫描电子显微镜(SEM)、热常数分析仪、差示扫描量热仪(DSC)、红外热成像和热重分析仪研究了所制备复合材料的微观结构、导热性能与相变过程。 研究结果表明,相比于碳酸钙和氧化铝,在相同添加含量下,氮化硼(BN)可有效提高PEG的导热系数,当BN质量分数为40%时,导热系数可达到3.40 W/(m·K);当填料添加量相同时,片状BN和不规则纳米碳酸钙(CaCO3)比球形氧化铝(Al2O3)对PEG具有更加优良的定型效果,在相变过程中,能够更加有效阻隔PEG的流动,保持复合材料的形状稳定性。  相似文献   

8.
聚氨酯/环氧树脂IPN复合抛光材料的制备及性能研究   总被引:1,自引:0,他引:1  
本研究采用聚氨酯与环氧树脂(PU/EP)作为胶黏剂形成互穿网络(IPN),以无机磨料和稀土抛光剂为分散相,通过一定的成型工艺制备成复合抛光材料。通过固化前后的红外光谱,分析了PU、EP两者之间的反应;热重分析表明PU/EP IPN复合抛光材料的耐热性能比纯的PU和EP有显著提高;体视显微镜照片显示该复合抛光材料具有微孔结构;力学及应用性能研究显示当胶黏剂含量为25%时性能最佳;且在PU/EP=2时,抛光后的玻璃透光率保持原有的97%,且耐磨性得到大幅度提高。  相似文献   

9.
以废弃聚氨酯泡沫(PUF)为原料,在其表面依次修饰聚丙烯酸(PAA)、Fe~(3+),然后在230℃条件下,通过高温碳化处理,制备了具有多孔结构的磁性碳化泡沫材料.用光学显微镜、红外吸收光谱(FTIR)、X-射线衍射(XRD)、接触角对磁性碳化泡沫进行表征.详细考察了AA含量、Fe~(3+)浓度对材料吸附容量、吸附速率的影响.材料具有明显的亲油、疏水特性,对各种有机溶剂和油类分子吸附容量都在10 g/g以上,而且在5 min内就可吸附饱和,同时材料密度小,可漂浮于水面对有机溶剂进行快速吸附,并通过外界磁场实现快速分离.因此,该材料在原油泄漏处理、油水分离、油田采出液处理、工业污水净化等领域具有重要的应用价值.  相似文献   

10.
聚氨酯/Al2O3纳米复合材料的制备和性能   总被引:4,自引:0,他引:4  
采用原位聚合法制备聚氨酯(PU)/Al2O3纳米复合材料.DSC和FT-IR测试结果表明:PU/Al2O3纳米复合材料中的氨酯羰基氢键化程度和硬段的有序化程度较纯PU低,且PU软硬段间有更好的相混合程度;TEM照片显示:Al2O3以纳米尺寸较均匀地分散在PU体系中,且纳米Al2O3粒子与PU基体有较强的界面作用;力学性能测试结果表明:少量纳米Al2O3粒子的加入,对PU材料有很好的增强和增韧效果.  相似文献   

11.
强度增强泡沫炭的制备、结构与性能   总被引:1,自引:0,他引:1  
本文采用石油系中间相沥青为原料,通过发泡、炭化和石墨化制备了沥青基泡沫炭,用聚碳硅烷(PCS)浸渍-裂解(PIP)工艺增强泡沫炭的机械强度。采用扫描电子显微镜(SEM)分析其微观结构, X射线衍射(XRD)分析确认PCS的裂解产物为β-SiC。经过三次PIP工艺,压缩强度测试表明泡沫炭的压缩强度随PIP次数的增加而显著提高。  相似文献   

12.
通过简单的原位生长法,将Cu3P纳米板阵列均匀负载在商业化的泡沫铜内部(NF?Cu3P@Cu),并用作锂金属负极的三维骨架载体材料。亲锂性的Cu3P纳米板阵列可以提供均匀且丰富的锂成核活性位点,诱导锂金属在NF?Cu3P@Cu内快速形核和均匀电沉积。同时,在电镀沉积锂时,Cu3P纳米板阵列会被锂化形成快离子导体Li3P,可以确保锂离子在复合负极中的快速均匀传输,从而有效抑制锂枝晶的形成。因此,获得的Li@NF?Cu3P@Cu复合负极材料在对称电池和全电池中,均表现出优异的循环稳定性。  相似文献   

13.
苏琼  张博文  张平  王曌  赵乐  苏小平 《化学通报》2023,86(9):1119-1125
在空气氛围下,900℃热解硼酸-三聚氰胺前驱体制备多孔氮化硼(PBN),然后通过原位沉淀法制备出Ag3PO4/PBN复合光催化剂。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光分光光度计(PL)等方法对复合物的结构和形貌进行分析。以罗丹明B(RhB)为降解底物,对光催化性能进行评价。使用异丙醇(PA)、乙二胺四乙酸二钠(EDTA-2Na)、对苯醌(BQ)和AgNO3捕获.OH、h+.O2-e-,对光催化机理进行研究。结果表明, Ag3PO4/PBN在PBN含量为70mg时催化效果最好,在可见光照射10min后,0.03g复合光催化剂对RhB溶液(50ml,30mg/L)降解率达到99.6%,具有优良的降解性能;3次重复实验后,催化剂的催化性能几乎没有发生变化,.OH、h+.O2-Ag3PO4/PBN光催化降解过程中起主要作用。  相似文献   

14.
采用聚氨酯泡沫为模板,依次修饰羧甲基纤维素钠(CMC)、Fe~(3+),在惰性气氛中高温热处理反应,制备多孔结构的磁性吸油材料.用光学显微镜、扫描电子显微镜、红外吸收光谱、X-射线衍射、接触角等技术对材料进行表征.详细考察了加热反应温度、CMC浓度和Fe~(3+)浓度对材料吸油性能和磁性的影响规律.实验表明,当加热反应温度选择230°C,CMC浓度为0.3 wt%,FeCl_3浓度为0.1 mol/L时,材料吸油性能最佳,对正己烷、二甲苯、环己烷、甲苯、乙酸乙酯、氯仿、机油、原油等有机溶剂和油类分子的吸附容量为10倍左右.磁性多孔材料具有明显的亲油、疏水特性,水的接触角达115.9°,同时材料密度只有0.036g/cm~3,能够漂浮于水面,实现对水面有机溶剂的快速吸附.吸附后的材料在外界磁场控制下,能够通过磁分离方式从水面快速分离.该材料具有良好的循环利用性能,可重复使用20次以上,吸油性能仍然保持良好.  相似文献   

15.
16.
毛竹屑与玉米淀粉共液化产物制备聚氨酯泡沫研究   总被引:2,自引:0,他引:2  
采用单因素试验设计,研究了液化剂组成、液比以及毛竹屑与淀粉的比例对液化产物理化性质、及所制备的聚氨酯泡沫材料的物理力学指标影响.结果显示当以50%乙二醇+50%碳酸亚乙酯混合物作为液化剂、添加相当于液化剂质量3%的浓硫酸为催化剂、在(150±5)℃(油浴)和常压条件下,液化150min,搅拌速度30r/min,取得本试验条件下最好的竹屑液化效果,液化产物中竹屑含量25%,残渣率3.96%,但该液化产物中天然聚合物碎片含量少,所制备的聚氨酯泡沫材料塌陷;竹屑与玉米淀粉共液化有效提高了液化产物中生物质的含量,但占液化剂质量25%竹屑+占液化剂质量125%玉米淀粉共液化产物粘度太高(8.85Pa.s);而20%竹屑+130%玉米淀粉的共液化产物与4,4′-二苯基甲烷二异氰酸酯以及各种助剂按异氰酸酯基/羟基摩尔比为1.1配合时,所制备的聚氨酯泡沫材料表观密度为33.6kg/m3、压缩强度118kPa、弹性模量6.91MPa,在周年生物降解试验中,该生物质基聚氨酯硬质泡沫失重率为12.63%.  相似文献   

17.
以聚对苯二甲酸乙二醇酯(PEA)、甲苯二异氰酸酯(TDI-80)、扩链剂(MOCA)、分子筛为原料,采用预聚体法制备了聚氨酯/分子筛复合材料.考察了分子筛的种类及加入量对聚氨酯/分子筛复合材料的耐溶剂性能、力学性能及热分解温度的影响.结果表明:在相同加入量的前提下,采用4A和13X分子筛制备的复合材料,前者的耐溶剂性能及力学性能要优于后者,当加入量为5%时,性能达到最佳.两者的加入均能提高复合材料的热分解温度,但影响相差不大.  相似文献   

18.
综述了聚氨酯/碳纳米管复合材料制备研究中碳纳米管的修饰方法及其复合材料的制备方法。碳纳米管的修饰方法包括共价修饰和非共价修饰,两种方法都可以有效改善碳纳米管在聚氨酯中的分散性。然而,共价修饰法会削弱碳纳米管的强度,非共价修饰层则容易脱落。因此,人们发展出了复合修饰法。该复合材料中的制备方法包括溶液共混法、熔融混合法和原位聚合法。评述了未来的发展趋势,提出朝简单、环保的方向改进碳纳米管的修饰方法,形成系统化的碳纳米管分散性评价的量化标准,发展出适应复合材料工业化生产线的制备方法,将是今后研究的重点。  相似文献   

19.
合成了不同类型聚醚聚氨酯/环氧树脂(PU/EP)互穿网络聚合物(IPN),通过改变PU中聚乙二醇分子量、3OH/2OH及NCO/OH比值等,研究IPN组份间分子混合程度,采用电镜、动态力学分析及应力应变等测试方法表征。结果表明:聚乙二醇分子量降低及3OH/2OH、NCO/OH比的提高,可使相容性提高,材料力学性能增强。  相似文献   

20.
PU/MOMMT纳米复合材料的制备与研究   总被引:3,自引:0,他引:3  
纳米复合材料由于其纳米尺寸效应,表面效应以及纳米粒子与基体界面间强的相互作用,具有优于相同组分常规复合材料的力学、热学等性能,引起了人们的广泛关注。用纳米材料改性聚合物,制备纳米复合材料是获得高性能高分子复合材料的重要方法。1998年以来,Pinnavaia等首先制备了聚氨酯,蒙脱土(PU/MMT)纳米复合材料,研究了有机蒙脱土在聚醚中的分散性。其后Chen等将聚羟基己内酯/蒙脱土(PCL/MMT)纳米复合材料加入到PCL和二苯基甲烷-4,4'-二异氰酸酯(MDI)合成的预聚体与1,4-丁二醇扩链反应后的溶液中,制备了PU/MMT纳米复合材料。少量PCL/MMT的引入可使复合材料的综合性能大幅提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号