首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Graphdiyne, consisting of sp- and sp(2)-hybridized carbon atoms, is a new member of carbon allotropes which has a natural band gap ~1.0 eV. Here, we report our first-principles calculations on the stable configurations and electronic structures of graphdiyne doped with boron-nitrogen (BN) units. We show that BN unit prefers to replace the sp-hybridized carbon atoms in the chain at a low doping rate, forming linear BN atomic chains between carbon hexagons. At a high doping rate, BN units replace first the carbon atoms in the hexagons and then those in the chains. A comparison study indicates that these substitution reactions may be easier to occur than those on graphene which composes purely of sp(2)-hybridized carbon atoms. With the increase of BN component, the band gap increases first gradually and then abruptly, corresponding to the transition between the two substitution motifs. The direct-band gap feature is intact in these BN-doped graphdiyne regardless the doping rate. A simple tight-binding model is proposed to interpret the origin of the band gap opening behaviors. Such wide-range band gap modification in graphdiyne may find applications in nanoscaled electronic devices and solar cells.  相似文献   

2.
Inspired by the recent discovery of the Ti-doped BN nanocages, here we report the design of novel boron nitride (BN) nanoribbons (BNNRs) doped with fourth-row transition metals (Sc−Cu) and the prediction of their structural and electromagnetic properties. First-principles calculations and ab initio molecular dynamics simulations show that Ti-doped BNNR possesses both thermodynamic and kinetic stability at high temperatures for synthesis of BN materials. Metal doping may make the nonmagnetic pristine BNNR ferromagnetic or antiferromagnetic, depending on the metal. The doping with all considered metals reduces substantially the band gap of pristine BNNR. For example, Sc-doped BNNR is ferromagnetic with an indirect band gap of 1.18 eV, while V-doped nanoribbon is antiferromagnetic with a direct gap of 2.50 eV. Remarkably, the carrier mobility in both materials is significantly enhanced compared to the pristine BNNR. Our findings suggest that doping with different metals may endow BNNRs with versatile electronic and magnetic properties.  相似文献   

3.
The typical two‐dimensional (2D) semiconductors MoS2, MoSe2, WS2, WSe2 and black phosphorus have garnered tremendous interest for their unique electronic, optical, and chemical properties. However, all 2D semiconductors reported thus far feature band gaps that are smaller than 2.0 eV, which has greatly restricted their applications, especially in optoelectronic devices with photoresponse in the blue and UV range. Novel 2D mono‐elemental semiconductors, namely monolayered arsenene and antimonene, with wide band gaps and high stability were now developed based on first‐principles calculations. Interestingly, although As and Sb are typically semimetals in the bulk, they are transformed into indirect semiconductors with band gaps of 2.49 and 2.28 eV when thinned to one atomic layer. Significantly, under small biaxial strain, these materials were transformed from indirect into direct band‐gap semiconductors. Such dramatic changes in the electronic structure could pave the way for transistors with high on/off ratios, optoelectronic devices working under blue or UV light, and mechanical sensors based on new 2D crystals.  相似文献   

4.
The electronic properties of 3d transition metal (TM)‐decorated silicene were investigated by using density functional calculations in an attempt to replace graphene in electronic applications, owing to its better compatibility with Si‐based technology. Among the ten types of TM‐doped silicene (TM–silicene) studied, Ti‐, Ni‐, and Zn‐doped silicene became semiconductors, whereas Co and Cu doping changed the substrate to a half‐metallic material. Interestingly, in cases of Ti‐ and Cu‐doped silicene, the measured band gaps turned out to be significantly larger than the previously reported band gap in silicene. The observed band‐gap openings at the Fermi level were induced by breaking the sublattice symmetry caused by two structural changes, that is, the Jahn–Teller distortion and protrusion of the TM atom. The present calculation of the band gap in TM–silicene suggests useful guidance for future experiments to fabricate various silicene‐based applications such as a field‐effect transistor, single‐spin electron source, and nonvolatile magnetic random‐access memory.  相似文献   

5.
Density functional theory calculations of the electronic structure of graphane and stoichiometrically halogenated graphene derivatives (fluorographene and other analogous graphene halides) show: (i) localized orbital basis sets can be successfully and effectively used for such two-dimensional materials; (ii) several functionals predict that the band gap of graphane is greater than that of fluorographene, whereas HSE06 gives the opposite trend; (iii) HSE06 functional predicts quite good values of band gaps with respect to benchmark theoretical and experimental data; (iv) the zero band gap of graphene is opened by hydrogenation and halogenation and strongly depends on the chemical composition of mixed graphene halides; (v) the stability of graphene halides decreases sharply with increasing size of the halogen atom--fluorographene is stable, whereas graphene iodide spontaneously decomposes. In terms of band gap and stability, the C(2)FBr and C(2)HBr derivatives seem to be promising materials, e.g., for (opto)electronics applications, because their band gaps are similar to those of conventional semiconductors, and they are expected to be stable under ambient conditions. The results indicate that other fluorinated compounds (C(a)H(b)F(c) and C(a)F(b)Y(c), Y = Cl, Br, I) are stable insulators.  相似文献   

6.
We report three‐dimensional (3D) nanoporous graphene with preserved 2D electronic properties, tunable pore sizes, and high electron mobility for electronic applications. The complex 3D network comprised of interconnected graphene retains a 2D coherent electron system of massless Dirac fermions. The transport properties of the nanoporous graphene show a semiconducting behavior and strong pore‐size dependence, together with unique angular independence. The free‐standing, large‐scale nanoporous graphene with 2D electronic properties and high electron mobility holds great promise for practical applications in 3D electronic devices.  相似文献   

7.
We present a theory to describe the interaction of electrons in gapped and gapless graphene with a strong off-resonant electromagnetic field (dressing field). This interaction (electromagnetic dressing) is shown to renormalize substantially electron velocities and the band gap in gapped graphene. Particularly, renormalized electronic parameters depend strongly on the field polarization: linearly polarized fields always reduce the gap, while circularly polarized fields break the equivalence of the valleys at various points of the Brillouin zone and can increase or decrease the corresponding band gaps. Moreover, a linearly polarized dressing field induces anisotropy of electron dispersion in the graphene plane. Consequently, dressing fields can be an effective tool to control electronic properties of graphene and be prospectively used in various optoelectronic devices.  相似文献   

8.
Two-dimensional semiconducting materials with moderate band gap and high carrier mobil-ity have a wide range of applications for electronics and optoelectronics in nanoscale. On the basis of first-principles calculations, we perform a comprehensive study on the electronics and optical properties of graphene-like boron phosphide (BP) sheets. The global structure search and first-principles based molecular dynamic simulation indicate that two-dimensional BP sheet has a graphene-like global minimum structure with high stability. BP monolayer is semiconductor with a direct band gap of 1.37 eV, which reduces with the number of layers. Moreover, the band gaps of BP sheets are insensitive to the applied uniaxial strain.= The calculated mobility of electrons in BP monolayer is as high as 106 cm2/(V·s). Lastly, the MoS2/BP van der Waals heterobilayers are investigated for photovoltaic applications, and their power conversion efficiencies are estimated to be in the range of 17.7%-19.7%. This study implies the potential applications of graphene-like BP sheets for electronic and optoelectronic devices in nanoscale.  相似文献   

9.
Metal‐doped polyoxotitanium cages are a developing class of inorganic compounds which can be regarded as nano‐ and sub‐nano sized molecular relatives of metal‐doped titania nanoparticles. These species can serve as models for the ways in which dopant metal ions can be incorporated into metal‐doped titania (TiO2), a technologically important class of photocatalytic materials with broad applications in devices and pollution control. In this study a series of cobalt(II)‐containing cages in the size range ca. 0.7–1.3 nm have been synthesized and structurally characterized, allowing a coherent study of the factors affecting the band gaps in well‐defined metal‐doped model systems. Band structure calculations are consistent with experimental UV/Vis measurements of the TixOy absorption edges in these species and reveal that molecular dipole moment can have a profound effect on the band gap. The observation of a dipole‐induced band‐gap decrease mechanism provides a potentially general design strategy for the formation of low band‐gap inorganic cages.  相似文献   

10.
Since their discovery, two-dimensional (2D) materials have attracted significant research attention owing to their excellent and controllable physical and chemical properties. These materials have emerged rapidly as important material system owing to their unique properties such as electricity, optics, quantum properties, and catalytic properties. 2D materials are mostly bonded by strong ionic or covalent bonds within the layers, and the layers are stacked together by van der Waals forces, thereby making it possible to peel off 2D materials with few or single layers. The weak interaction between the layers of 2D materials also enables the use of van der Waals gaps for regulating the electronic structure of the system and further optimizing the material properties. The introduction of guest atoms can significantly change the interlayer spacing of the original material and coupling strength between the layers. Also, interaction between the guest and host atom also has the potential to change the electronic structure of the original material, thereby affecting the material properties. For example, the electron structure of a host can be modified by interlayer guest atoms, and characteristics such as carrier concentration, optical transmittance, conductivity, and band gap can be tuned. Organic cations intercalated between the layers of 2D materials can produce stable superlattices, which have great potential for developing new electronic and optoelectronic devices. This method enables the modulation of the electrical, magnetic, and optical properties of the original materials, thereby establishing a family of 2D materials with widely adjustable electrical and optical properties. It is also possible to introduce some new properties to the 2D materials, such as magnetic properties and catalytic properties, by the intercalation of guest atoms. Interlayer storage, represented by lithium-ion batteries, is also an important application of 2D van der Waals gap utilization in energy storage, which has also attracted significant research attention. Herein, we review the studies conducted in recent years from the following aspects: (1) changing the layer spacing to change the interlayer coupling; (2) introducing the interaction between guest and host atoms to change the physico-chemical properties of raw materials; (3) introducing the guest substances to obtain new properties; and (4) interlayer energy storage. We systematically describe various interlayer optimization methods of 2D van der Waals gaps and their effects on the physical and chemical properties of synthetic materials, and suggest the direction of further development and utilization of 2D van der Waals gaps.  相似文献   

11.
Two-dimensional (2D) molybdenum disulfide (MoS2) is the most mature material in 2D material fields owing to its relatively high mobility and scalability. Such noticeable properties enable it to realize practical electronic and optoelectronic applications. However, contact engineering for large-area MoS2 films has not yet been established, although contact property is directly associated to the device performance. Herein, we introduce graphene-interlayered Ti contacts (graphene/Ti) into large-area MoS2 device arrays using a wet-transfer method. We achieve MoS2 devices with superior electrical and photoelectrical properties using graphene/Ti contacts, with a field-effect mobility of 18.3 cm2/V∙s, on/off current ratio of 3 × 107, responsivity of 850 A/W, and detectivity of 2 × 1012 Jones. This outstanding performance is attributable to a reduction in the Schottky barrier height of the resultant devices, which arises from the decreased work function of graphene induced by the charge transfer from Ti. Our research offers a direction toward large-scale electronic and optoelectronic applications based on 2D materials.  相似文献   

12.
Thin‐layer 2D materials have been attracting enormous interest, and various processes have been investigated to obtain these materials efficiently. In view of their practical applications, the most desirable source for the preparation of these thin‐layer materials is the pristine bulk materials with stacked layers, such as pristine graphite. There are many options in terms of conditions for the exfoliation of thin‐layer materials, and these include wet and dry processes, with or without additives, and the kind of solvent. In this context, we found that the versatile exfoliant hexahydroxytriphenylene works efficiently for the exfoliation of typical 2D materials such as graphene, MoS2, and hexagonal boron nitride (h‐BN) by both wet and dry processes by using sonication and ball milling, respectively, in aqueous and organic solvents. As for graphene, stable dispersions with relatively high concentrations (up to 0.28 mg mL?1) in water and tetrahydrofuran were obtained from graphite in the presence of hexahydroxytriphenylene by a wet process with the use of bath sonication and by a dry process involving ball milling. Especially, most of the graphite was exfoliated and dispersed as thin‐layer graphene in both aqueous and organic solvents through ball milling, even on a large scale (47–86 % yield). In addition, the exfoliant was easily removed from the precipitated composite by heat treatment without disturbing the graphene structure. Bulk MoS2 and h‐BN were also exfoliated by both wet and dry processes. Similar to graphene, dispersions of MoS2 and h‐BN of high concentrations in water and DMF were produced in high yields through ball milling.  相似文献   

13.
基于新合成的二维材料MoSi2N4(MSN),我们建立了一系列MSN的掺杂模型进行了第一原理计算。首先,我们计算了本征MSN的电子特性,包括其能带结构和态密度。然后我们研究了Cr、Sn和Co掺杂对MSN的电子和光学性质的影响。结果表明,在3种掺杂体系中,Co掺杂体系表现出最低的形成能,这表明Co掺杂体系是最稳定的。通过带隙计算表明,尽管3种掺杂模型都降低了MSN的固有带隙,但却表现出3种不同的电子特性。态密度图也显示,Cr和Co掺杂体系都在导带底(CBM)和价带顶(VBM)附近产生局部尖峰。此外,光学性质的计算中表明,掺杂后体系的光学性质也得到了改善。  相似文献   

14.
Flexible perovskite solar cells have attracted widespread research effort because of their potential in portable electronics. The efficiency has exceeded 18 % owing to the high‐quality perovskite film achieved by various low‐temperature fabrication methods and matching of the interface and electrode materials. This Review focuses on recent progress in flexible perovskite solar cells concerning low‐temperature fabrication methods to improve the properties of perovskite films, such as full coverage, uniform morphology, and good crystallinity; demonstrated interface layers used in flexible perovskite solar cells, considering key figures‐of‐merit such as high transmittance, high carrier mobility, suitable band gap, and easy fabrication via low‐temperature methods; flexible transparent electrode materials developed to enhance the mechanical stability of the devices; mechanical and long‐term environmental stability; an outlook of flexible perovskite solar cells in portable electronic devices; and perspectives of commercialization for flexible perovskite solar cells based on cost.  相似文献   

15.
Adsorption of transition atoms on a (8,0) zigzag single-walled boron nitride (BN) nanotube has been investigated using density-functional theory methods. Main focuses have been placed on configurations corresponding to the located minima of the adsorbates, the corresponding binding energies, and the modified electronic properties of the BN nanotubes due to the adsorbates. We have systemically studied a series of metal adsorbates including all 3d transition-metal elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and two group-VIIIA transition-metal elements (Pd and Pt). We found that many transition-metal atoms can be chemically adsorbed on the outer surface of the BN nanotubes and that the adsorption process is typically exothermic. Upon adsorption, the binding energies of the Sc, Ti, Ni, Pd, and Pt atoms are relatively high (>1.0 eV), while those of V, Fe, and Co atoms are modest, ranging from 0.62 to 0.92 eV. Mn atom forms a weak bond with the BN nanotube, while Zn atom cannot be chemically adsorbed on the BN nanotube. In most cases, the adsorption of transition-metal atoms can induce certain impurity states within the band gap of the pristine BN nanotube, thereby reducing the band gap. Most metal-adsorbed BN nanotubes exhibit nonzero magnetic moments, contributed largely by the transition-metal atoms.  相似文献   

16.
Two-dimensional conjugated metal–organic frameworks (2D c-MOFs) are emerging as a unique class of electronic materials. However, 2D c-MOFs with band gaps in the Vis-NIR and high charge carrier mobility are rare. Most of the reported conducting 2D c-MOFs are metallic (i.e. gapless), which largely limits their use in logic devices. Herein, we design a phenanthrotriphenylene-based, D2h-symmetric π-extended ligand ( OHPTP ), and synthesize the first rhombic 2D c-MOF single crystals ( Cu2(OHPTP) ). The continuous rotation electron diffraction (cRED) analysis unveils the orthorhombic crystal structure at the atomic level with a unique slipped AA stacking. The Cu2(OHPTP) is a p-type semiconductor with an indirect band gap of ≈0.50 eV and exhibits high electrical conductivity of 0.10 S cm−1 and high charge carrier mobility of ≈10.0 cm2 V−1 s−1. Theoretical calculations underline the predominant role of the out-of-plane charge transport in this semiquinone-based 2D c-MOF.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are key components of organic electronics. The electronic properties of these carbon‐rich materials can be controlled through doping with heteroatoms such as B and N, however, few convenient syntheses of BN‐doped PAHs have been reported. Described herein is the rationally designed, two‐step syntheses of previously unknown ixene and BN‐doped ixene (B2N2‐ixene), and their characterizations. Compared to ixene, B2N2‐ixene absorbs longer‐wavelength light and has a smaller electrochemical energy gap. In addition to its single‐crystal structure, scanning tunneling microscopy revealed that B2N2‐ixene adopts a nonplanar geometry on a Au(111) surface. The experimentally obtained electronic structure of B2N2‐ixene and the effect of BN‐doping were confirmed by DFT calculations. This synthesis enables the efficient and convenient construction of BN‐doped systems with extended π‐conjugation that can be used in versatile organic electronics applications.  相似文献   

18.
Doped graphene materials are of huge importance because doping with electron‐donating or electron‐withdrawing groups can significantly change the electronic structure and impact the electronic and electrochemical properties of these materials. It is highly important to be able to produce these materials in large quantities for practical applications. The only method capable of large‐scale production is the oxidative treatment of graphite to graphene oxide, followed by its consequent reduction. We describe a scalable method for a one‐step doping of graphene with phosphorus, with a simultaneous reduction of graphene oxide. Such a method is able to introduce significant amount of dopant (3.65 at. %). Phosphorus‐doped graphene is characterized in detail and shows important electronic and electrochemical properties. The electrical conductivity of phosphorus‐doped graphene is much higher than that of undoped graphene, owing to a large concentration of free carriers. Such a graphene material is expected to find useful applications in electronic, energy storage, and sensing devices.  相似文献   

19.
Multicomponent two-dimensional (2D) transition metal dichalcogenides (TMDCs) semiconductors based on adjustable band gap are increasingly used to design optoelectronic devices with specific spectral response. Here, we have designed the MoxW1-xS2/graphene heterostructure with adjustable band gap by adopting the combination idea of alloying and multiple heterogeneous recombination. The contact type, stability and photoelectric properties of MoxW1-xS2/graphene heterojunction were investigated theoretically. At the same time, by applying external vertical electric field to MoxW1-xS2/graphene, the regulate of heterojunction Schottky contact type was realized. The results show that MoxW1-xS2/graphene heterojunction has broad application prospects in the field of photocatalysis and Schottky devices, and is suitable for being a potential candidate material for next generation of optoelectronic devices. The design of MoxW1-xS2/graphene heterostructure enables it to obtain the advanced characteristics that are lacking in the one-component intrinsic 2D TMDCs semiconductors or graphene materials, and provides a theoretical basis for the experimental preparation of such heterojunctions.  相似文献   

20.
Introduction of defects and nitrogen doping are two of the most pursued methods to tailor the properties of graphene for better suitability to applications such as catalysis and energy conversion. Doping nitrogen atoms at defect sites of graphene and codoping them along with boron atoms can further increase the efficiency of such systems due to better stability of nitrogen at defect sites and stabilization provided by B?N bonding. Systematic exploration of the possible doping/codoping configurations reflecting defect regions of graphene presents a prevalent doping site for nitrogen‐rich BN clusters and they are also highly suitable for modulating (0.2–0.9 eV) the band gap of defect graphene. Such codoped systems perform significantly better than the platinum surface, undoped defect graphene, and the single nitrogen or boron atom doped defect graphene system for dioxygen adsorption. Significant stretching of the O?O bond indicates a lowering of the bond breakage barrier, which is advantageous for applications in the oxygen reduction reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号