首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
3D C/C复合材料的电弧驻点烧蚀及机理分析   总被引:1,自引:0,他引:1  
采用电弧驻点烧蚀试验方法,测试细编穿刺毡增强体C/C复合材料的烧蚀率,并采用电子扫描显微镜观察烧蚀表面形貌。研究结果表明:在电弧驻点烧蚀试验条件下,3D C/C复合材料具有较好的烧蚀性能;C/C复合材料的烧蚀过程主要受热化学烧蚀和机械剥蚀2种烧蚀机制的共同作用,二者相互促进,以机械剥蚀为主;微观烧蚀形貌主要由热化学化蚀导致,宏观烧蚀形貌则主要是机械剥蚀所致。  相似文献   

2.
3.
纤维增强复合材料以耐高温、高比强度等优点在航空航天领域得到广泛应用,为有效提高多孔复合材料沉积过程的可控性与均匀性,该研究提出一种基于双温区-双通道结构的双工艺化学气相渗透/沉积(chemical vapor infiltration/deposition, CVI/CVD)系统。基于装备设计-建造-理论-制备-优化的一体化研究思路,对该系统制备碳纤维增强碳基复合材料(C/C复合材料)进行工艺设计与优化研究。通过建立流动、传热和物质传递反应模型,分析了温度、速度、浓度对致密化过程的影响,其中降低沉积温度能够提高厚度方向的沉积均匀性,通过改变空间温度梯度能够实现沉积位置的控制,初始速度、浓度的匹配能够提高致密化效率。利用双工艺CVI/CVD系统对多孔复合材料进行两步法沉积模拟,验证了C/C复合材料沉积样件均匀性控制与工艺优化的可行性。  相似文献   

4.
利用SEM断口形貌分析了现役航空刹车用C/C复合材料的结构和界面结合状况,探讨了其断裂机理,分析了化学气相沉积炭的沉积机理.结果表明:C/C复合材料的断裂以"弱界面断裂"为主.裂纹优先在基体炭、炭布层间或长纤维束和短纤维间的弱界面等薄弱环节处产生.当裂纹尖端扩展到基体炭中的微裂纹处时,裂纹扩展转向;当裂纹扩展到纤维时,取道纤维与基体炭间弱界面层向前扩展,纤维经历与基体炭脱粘、弯曲、拔出、断裂等过程,导致整个材料断裂.航空刹车用C/C复合材料中的CVD炭以粗糙层状结构为主,CVD过程包括碳氢气体热解、成核、炭化、沉积生长等过程,其中,成核以物理成核为主.图2,表1,参16.  相似文献   

5.
研究了反应气体浓度对微正压等温化学气相沉积制备的C/C复合材料密度和显微结构的影响,结果表明:在微正压和900 ℃的沉积条件下,用丙烯作为碳源、针刺毡作为预制体,氮气与丙烯的气体流量比为25∶1,经过105 h沉积后,C/C复合材料的密度达到1.52 g/cm3;通过偏光显微镜观察分析发现试样外部除了围绕在炭纤维周围的光滑层外,还沉积了大量的再生结构热解炭,试样内部主要以光滑层结构为主.图7,参12.  相似文献   

6.
基于炭基和硅基防热复合材料的烧蚀机理对C/C-SiC防热复合材料进行烧蚀分析.依据相变原理,在热传导方程和能量平衡原理的基础上,建立了一维非稳态烧蚀数值模型,模拟了C/C-SiC防热复合材料的烧蚀过程,分析结果与实验数据吻合良好.同时通过数值对比看出,在同等的烧蚀环境中,C/C复合材料的烧蚀速率最快,材料内部温度最低;...  相似文献   

7.
在氧化性气氛(21% O2 79% Ar)、不同拉应力下研究SiC涂层C/C复合材料在1 000 ℃和1 300 ℃的氧化失效行为;采用扫描电镜观察SiC涂层C/C复合材料氧化失效后的断口形貌.试验结果表明:当温度为1 000 ℃,拉应力由C/C复合材料拉伸强度的20%增加至50%时,SiC涂层C/C复合材料的应力氧化明显加剧,寿命由大于5.00 h缩短到2.92 h,应力对SiC涂层C/C复合材料的寿命有显著影响;当拉应力为C/C复合材料拉伸强度的50%,温度为1 000 ℃和1 300 ℃时,材料均在低温区断裂,应力氧化寿命分别为2.92 h和2.62 h,温度对应力氧化寿命的影响不明显;应力氧化失效以纤维的氧化失效为主,外加拉应力起促进作用.  相似文献   

8.
以针刺整体毡为预制体制备C/SiC复合材料,在材料表面制备CVD SiC涂层,研究涂层试样氧化前、后的微观结构和室温弯曲性能。研究结果表明:CVD SiC涂层由球形颗粒熔聚体、裸露裂纹和附着裂纹组成,于1400℃氧化时附着裂纹发生愈合;C/SiC试样的弯曲强度为119.9MPa,涂层试样及其分别经1000,1200和1400℃连续氧化5h后,弯曲强度分别为188.5,41.0,60.7和104.5MPa;随氧化温度的升高,SiC涂层的保护作用增强是残留弯曲强度提高的根本原因:C/SiC试样、涂层试样和经1200和1400℃氧化的试样均表现为分层断裂,纤维束边缘区域炭的适度氧化弱化了纤维/热解炭界面,使氧化试样表现出明显的假塑性;经1000℃氧化的涂层试样,由于纤维束的严重氧化,表现为脆性断裂特征。  相似文献   

9.
为了改善等离子喷涂ZrO2涂层的抗热震性能,利用热震试验、SEM和EPMA等技术,研究了CeO2添加剂对其显微组织和抗热震性能的影响.研究结果表明当CeO2添加剂的质量分数小于9.0%时,涂层的抗热震性能随CeO2添加剂质量分数的增加而提高,当CeO2质量分数大于9.0%时,涂层的抗热震性能随其质量分数的增加而降低;ZrO2涂层的抗热震次数为46次,而ZrO2+9.0%CeO2涂层的抗热震次数为105次;ZrO2+9.0%CeO2涂层在热循环中形成网状微裂纹,不仅可以降低涂层中的应力,而且可以提高涂层开裂的临界温差,从而改善其抗热震性能.  相似文献   

10.
碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是航空航天和聚变能源等高技术领域理想的高温结构材料,改善纤维与基体的界面结合是提高其力学性能的关键。本文采用化学气相沉积法在纤维表面原位生长碳纳米管,以达到改善纤维与基体的结合同时对复合材料进行二次增强的目的。结果表明,采用碳纳米管增强的SiCf/SiC复合材料的力学性能有不同程度的提高,特别是当碳纳米管的体积分数为5.31%时,复合材料的断裂韧性提高106.3%。纤维表面的碳纳米管层与纤维结合较弱,能够促进纤维的拔出,从而促进复合材料断裂韧性的提高;另外,碳纳米管的拔出对复合断裂韧性的提高也有一定的促进作用。  相似文献   

11.
碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是航空航天和聚变能源等高技术领域理想的高温结构材料,改善纤维与基体的界面结合是提高其力学性能的关键。本文采用化学气相沉积法在纤维表面原位生长碳纳米管,以达到改善纤维与基体的结合同时对复合材料进行二次增强的目的。结果表明,采用碳纳米管增强的SiCf/SiC复合材料的力学性能有不同程度的提高,特别是当碳纳米管的体积分数为5.31%时,复合材料的断裂韧性提高106.3%。纤维表面的碳纳米管层与纤维结合较弱,能够促进纤维的拔出,从而促进复合材料断裂韧性的提高;另外,碳纳米管的拔出对复合断裂韧性的提高也有一定的促进作用。  相似文献   

12.
根据化学气相沉积法的工艺特点,对C/C复合材料SiC涂层的制备过程进行了数学建模和有限元模拟,得出了反应器内以及试样表面反应物浓度的变化规律,并且获得了反应器内反应物浓度与沉积产物间的关系.结合实验分析,验证了SiC涂层晶粒尺寸的变化和沉积形貌的演变是由于反应气体浓度分布随位置变化造成的:沿着反应气体流动的方向,反应物浓度逐渐降低,沉积得到的SiC晶粒尺寸逐渐减小,沉积形貌由堆积岛状到颗粒状再到晶须状逐级演变.  相似文献   

13.
化学液相气化沉积C/C复合材料的性能研究   总被引:1,自引:0,他引:1  
在不加和加入催化剂的条件下,采用化学液相气化沉积工艺分别在1000℃-10 h及900℃- 8 h内制备出密度为1.67 g/cm~3的大尺寸(φ110 mm×25 mm)C/C复合材料.不加催化剂制备的C/C复合材料主要以粗糙层为主,锥状结构明显,呈脆性断裂模式;在加入催化剂的条件下,由于催化荆的存在能够增加C沉积时的形核点,降低C沉积温度,缩短沉积时间,所以制备的C/C复合材料均匀性增加,组织结构主要为光滑层和各向同性组织,断裂方式为台阶式假塑性断裂.热处理后两种材料的弯曲强度和模量都降低,石墨化度增加,而不加催化剂制备的复合材料的力学性能和石墨化度都高于加入催化剂条件下制备的复合材料.  相似文献   

14.
为了缓解C/C复合材料脆性,利用勃姆石溶胶对单向碳纤维预制体进行处理,在纤维表面制备了Al2O3涂层.使用自制的热梯度化学气相沉积(TG-CVI)设备对预制体进行致密化,得到致密的C/C复合材料.通过高温热处理进一步调节界面的结合强度和基体碳的石墨化程度.利用排水法测试复合材料的密度,万能材料试验机测试其拉伸性能,采用可视化石墨烯片层技术(VGT)对试样进行处理,使用偏光显微镜(PLM)、扫描电子显微镜(SEM)、X-射线衍射(XRD)分别研究复合材料的微观组织、界面和断面形貌、以及物相组成.结果表明:涂覆Al2O3涂层的C/C复合材料在沉积后期转变为粗糙层(RL)织构.经过高温热处理后,碳基体的石墨化程度提高,改变了C/C复合材料的断裂机制.由复合材料最初的脆性断裂向拟延性转变,延伸率提高.C(f(Al2O3))/C-3样品的峰值应力达到了77.3 MPa,延伸率达到了15%.  相似文献   

15.
对制备碳/碳复合材料的各种方法和过程作了评述,包括予制体成型,致密化处理,液相浸渍工艺,化学气相沉积工艺等,重点介绍了由德国Karlsruhe大学研究组提出的已为实验所验证的、新的碳沉积理论,最后对碳/碳复合材料在各民用领域的应用趋向作了乐观的展望.  相似文献   

16.
ZrO2–YO1.5–TaO2.5(ZYTO)三元体系因其低的热导率、稳定的四方相结构和铁弹性增韧机制,成为了热障涂层陶瓷层候补材料中的研究热点。然而,目前ZYTO材料的研究主要集中在块体结构及性能方面,对于其作为热障涂层实际应用的结构及性能却鲜有报道。本文旨在系统地研究ZYTO热障涂层在高温服役过程中的结构及性能演变,并明确其高温失效机理。本文通过大气等离子喷涂方法制备了ZYTO热障涂层,并研究了其在1150°C下的热循环性能及微观结构演变。研究结果表明,尽管ZYTO块体材料具有良好的热学和力学性能,但是大气等离子喷涂ZYTO热障涂层却表现出极短的热循环寿命。这主要归因于在超高温的大气等离子喷涂过程中Ta元素有限的溶解度以及急速冷却所伴随的非平衡晶界Ta偏析现象,导致 ZYTO热障涂层发生了从稳定四方相到亚稳四方相和立方相的相变过程。相变过程带来了~0.74vol%的体积收缩,使得涂层中亚稳四方相和立方相的相界处萌生了大量微裂纹。此外,具有大量晶界Ta偏析的立方相表现出明显的晶间脆化,显著降低了涂层的结合强度(~5.3 MPa),使得大气等离子喷涂ZYTO热障涂层过早失效。  相似文献   

17.
对制备碳 /碳复合材料的各种方法和过程作了评述 ,包括予制体成型 ,致密化处理 ,液相浸渍工艺 ,化学气相沉积工艺等 ,重点介绍了由德国Karlsruhe大学研究组提出的已为实验所验证的、新的碳沉积理论 ,最后对碳 /碳复合材料在各民用领域的应用趋向作了乐观的展望  相似文献   

18.
对Al的质量分数分别为0.20%,0.35%,0.60%的Cu-Al合金粉末进行内氧化,得到Cu-Al2O3粉末。采用化学气相沉积法在Cu-Al2O3粉末表面原位生长碳纳米管(carbon nano tubes, CNTs),采用放电等离子烧结工艺成功制备了CNTs/Cu-Al2O3复合材料。采用扫描电子显微镜和透射电子显微镜观察了CNTs/Cu-Al2O3复合粉末、复合材料断口的形貌。采用显微硬度计、微拉伸试验机、摩擦磨损试验机分别对纯Cu及复合材料的维氏硬度、抗拉强度、摩擦因数进行测试。采用电化学工作站测试复合材料在3.5%NaCl (质量分数)水溶液中的耐腐蚀性能。结果表明,随着Al的质量分数的增加,粉末表面合成的CNTs的数量也增多。Al的质量分数为0.35%时,CNTs/Cu-Al2O3复合材料的综合性能最佳,与纯Cu相比,复合材料的抗拉强度和腐蚀电势分别提高了86.4%和43.2%,分别为315 MPa和-0.268 V,摩擦因数降低了53.3%,仅为0.28。  相似文献   

19.
采用大气等离子喷涂制备了TiO2质量百分比分别为0%、3%、13%、20%、40%5种Al2O3-TiO2系涂层.利用Rietveld法以及添加标样的办法对喷涂前后的材料物相进行了定量分析,探讨了材料的相变过程.经喷涂,大部分α-Al2O3转变为亚稳相γ-Al2O3,喷涂粉末中存在的TiAl2O5保留在涂层中,有四种涂层中还形成了非晶相.涂层中的非晶相的含量先随着TiO2增加而增加,在TiO2的质量百分比为13%时最多,而后下降.这个趋势是喷涂粉末中Al2O3含量以及喷涂过程中材料的冷却速率共同作用的结果.  相似文献   

20.
3D C/SiC复合材料的力学性能   总被引:14,自引:0,他引:14  
对三维四向编织结构炭纤维增强碳化硅基复合材料的弯曲、断裂韧性和拉伸性能进行研究,利用扫描电镜(SEM)观察材料的断口形貌,获得该材料主要的力学性能及破坏规律.研究结果表明:三维C/SiC复合材料具有较高的弯曲强度和断裂韧性,最高值分别为465 MPa和15.1 MPa·m1/2;界面结合适中的材料纤维与纤维束被大量拔出,表现出较好的假塑性断裂特征;材料的拉伸强度最高达到168 MPa:材料在拉伸过程中,其纤维束在外力作用下向受力的轴向靠拢,纤维束间的夹角减少,材料总应变增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号