首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Human kinesin spindle protein (KSP)/hsEg5, a member of the kinesin-5 family, is essential for mitotic spindle assembly in dividing human cells and is required for cell cycle progression through mitosis. Inhibition of the ATPase activity of KSP leads to cell cycle arrest during mitosis and subsequent cell death. Ispinesib (SB-715992), a potent and selective inhibitor of KSP, is currently in phase II clinical trials for the treatment of multiple tumor types. Mutations that attenuate Ispinesib binding to KSP in vitro have been identified, highlighting the need for inhibitors that target different binding sites and inhibit KSP activity by novel mechanisms. We report here a small-molecule modulator, KSPA-1, that activates KSP-catalyzed ATP hydrolysis in the absence of microtubules yet inhibits microtubule-stimulated ATP hydrolysis by KSP. KSPA-1 inhibits cell proliferation and induces monopolar-spindle formation in tumor cells. Results from kinetic analyses, microtubule (MT) binding competition assays, and hydrogen/deuterium-exchange studies show that KSPA-1 does not compete directly for microtubule binding. Rather, this compound acts by driving a conformational change in the KSP motor domain and disrupts productive ATP turnover stimulated by MT. These findings provide a novel mechanism for targeting KSP and perhaps other mitotic kinesins.  相似文献   

2.
Single molecule F?rster resonance energy transfer (FRET) experiments are a versatile method for investigating the conformational distributions and dynamics of biological macromolecules. In a common type of experiment, the fluorescence bursts from individual molecules freely diffusing in solution are detected as they pass through the observation volume of a confocal microscope. Correlation analysis of the fluorescence bursts shows that under typical experimental conditions, for time scales up to several tens of milliseconds, the probability for a molecule to return to the confocal volume is greater than the probability of a new molecule being detected. Here we present RASP (recurrence analysis of single particles), a method that is based on this recurrence behavior and allows us to significantly extend the information that can be extracted from single molecule FRET experiments. The number and peak shapes of subpopulations within the sample can be identified essentially in a model-free way by constructing recurrence FRET efficiency histograms. These are obtained by first selecting photon bursts from a small transfer efficiency range (initial bursts), and then building the FRET efficiency histogram only from bursts detected within a short time (the recurrence interval) after the initial bursts. Systematic variation of the recurrence interval allows the kinetics of interconversion between subpopulations to be determined on time scales from ~50 μs up to ~100 ms from equilibrium measurements. We demonstrate the applicability of the method on measurements of several peptides and proteins with different degrees of conformational heterogeneity and folding dynamics. The concepts presented here can be extended to other observables available from single molecule fluorescence experiments.  相似文献   

3.
Single molecule measurements have allowed series of kinetic events of biomolecules to be monitored without interruption. The stepwise movement of molecular motors was measured and analyzed in relation to the hydrolysis reaction of ATP. In the case of kinesin, forward and backward steps occurred stochastically at the same chemical state. The directional movement was explained by the asymmetric potential created by the interaction between kinesin and microtubules. Similarly thermal Brownian movement of myosin during the hydrolysis of single ATP molecules was biased through an asymmetric potential, resulting in directional movement. Thus, single molecule measurements have provided new approaches to analyze the function of molecular motors which often consist of several different events.  相似文献   

4.
Heterogeneous line broadening and spectral diffusion of the fluorescence emission spectra of perylene diimide molecules have been investigated by means of time dependent single molecule spectroscopy. The influence of temperature and environment has been studied and reveals strong correlation to spectral diffusion processes. We followed the freezing of the molecular mobility of quasi free molecules on the surface upon temperature lowering and by embedding into a poly(methyl methacrylate) (PMMA) polymer. Thereby changes of optical transition energies as a result of both intramolecular changes of conformation and external induced dynamics by the surrounding polymer matrix could be observed. Simulations of spectral fluctuations within a two-level system (TLS) model showed good agreement with the experimental findings.  相似文献   

5.
Single molecule recognition imaging and dynamic force spectroscopy (DFS) analysis showed strong binding affinity between an aptamer and ricin, which was comparable with antibody-ricin interaction. Molecular simulation showed a ricin binding conformation with aptamers and gave different ricin conformations immobilizing on substrates that were consistent with AFM images.  相似文献   

6.
MD simulations of homomorphous single-stranded PNA, DNA, and RNA with the same base sequence have been performed in aqueous solvent. For each strand two separate simulations were performed starting from a (i) helical conformation and (ii) random coiled state. Comparisons of the simulations with the single-stranded helices (case i) show that the differences in the covalent nature of the backbones cause significant differences in the structural and dynamical properties of the strands. It is found that the PNA strand maintains its nice base-stacked initial helical structure throughout the 1.5-ns MD simulation at 300 K, while DNA/RNA show relatively larger fluctuations in the structures with a few local unstacking events during -ns MD simulation each. It seems that the weak physical coupling between the bases and the backbone in PNA causes a loss of correlation between the dynamics of the bases and the backbone compared to the DNA/RNA and helps maintain the base-stacked helical conformation. The global flexibility of a single-stranded PNA helix was also found to be lowest, while RNA appears to be the most flexible single-stranded helix. The sugar pucker of several nucleotides in single-stranded DNA and RNA was found to adopt both C2'-endo and C3'-endo conformations for significant times. This effect is more pronounced for single strands in completely coiled states. The simulations with single-stranded coils as the initial structure also indicate that a PNA can adopt a more compact globular structure, while DNA/RNA of the same size adopts a more extended coil structure. This allows even a short PNA in the coiled state to form a significantly stable nonsequentially base-stacked globular structure in solution. Due to the hydrophobic nature of the PNA backbone, it interacts with surrounding water rather weakly compared to DNA/RNA.  相似文献   

7.
Massively parallel divide-and-conquer density functional tight-binding (DC-DFTB) molecular dynamics and metadynamics simulations are efficient approaches for describing various chemical reactions and dynamic processes of large complex systems via quantum mechanics. In this study, DC-DFTB simulations were combined with multi-replica techniques. Specifically, multiple walkers metadynamics, replica exchange molecular dynamics, and parallel tempering metadynamics methods were implemented hierarchically into the in-house Dcdftbmd program. Test simulations in an aqueous phase of the internal rotation of formamide and conformational changes of dialanine showed that the newly developed extensions increase the sampling efficiency and the exploration capabilities in DC-DFTB configuration space.  相似文献   

8.
The coupling between protein dynamics and hydration-water dynamics was assessed by perdeuteration, temperature-dependent neutron scattering, and molecular dynamics simulations. Mean square displacements of water and protein motions both show a broad transition at 220 K and are thus coupled. In particular, the protein dynamical transition appears to be driven by the onset of hydration-water translational motion.  相似文献   

9.
Six customized phenylene-ethynylene-based oligomers have been studied for their electronic properties using scanning tunneling microscopy to test hypothesized mechanisms of stochastic conductance switching. Previously suggested mechanisms include functional group reduction, functional group rotation, backbone ring rotation, neighboring molecule interactions, bond fluctuations, and hybridization changes. Here, we test these hypotheses experimentally by varying the molecular designs of the switches; the ability of the molecules to switch via each hypothetical mechanism is selectively engineered into or out of each molecule. We conclude that hybridization changes at the molecule-surface interface are responsible for the switching we observe.  相似文献   

10.
11.
The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (~15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (~6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated as a function of time since shock wave passage in planes perpendicular to the direction of shock propagation, show that the molecular translational mobility in the picoseconds following shock wave passage is greatest for [001] and least for the [010] case. In all cases the root-mean-square center-of-mass displacement is small compared to the molecular diameter of nitromethane on the time scale of the simulations. The calculated time scales for the approach to thermal equilibrium are generally consistent with the predictions of a recent theoretical analysis due to Hooper [J. Chem. Phys. 132, 014507 (2010)].  相似文献   

12.
Spatially heterogeneous dynamics in supercooled glycerol over the temperature range 198 K (1.04T(g))-212 K (1.12T(g)) is investigated using widefield single molecule (SM) fluorescence microscopy. Measurements are performed using three different perylenedicarboximide probes to investigate whether probe size and probe-host interactions affect breadth of heterogeneity reported in the glassy host by such SM experiments. Rotational relaxation times of single probe molecules are measured, and for all probes, log-normal distributions of relaxation times are found. No significant change in relaxation time distribution as a function of temperature is evident for a given probe. However, across probes, probe rotational relaxation time is correlated with breadth of heterogeneous dynamics reported. Molecules that undergo changes in dynamics are identified using two complementary approaches that interrogate time scales between 10(3) and 10(6) τ(α), with τ(α) the structural relaxation time of glycerol. Exchange is found on the shortest time scales probed (~30 τ(c), with τ(c) the rotational correlation time of the probe) and is relatively temperature and probe independent. No evidence is found for additional exchange occurring on the longest time scales interrogated. Taken together with the fact that probes that rotate the fastest report the greatest breadth of spatially heterogeneous dynamics in the system, this indicates that exchange times reported from analysis of SM linear dichroism trajectories as described here are upper bounds on the average exchange time in the system.  相似文献   

13.
14.
Ultrasonics measurements were performed during the cure of epoxy resins. The results show some different comportments if there is only the gelation process which passes through the frequency window of the study or if there is also a vitrification phenomenon. The last case occurs with a high glass transition temperature epoxy resin like DGEBA-DDS. with which the increasing glass transition temperature of the resin is rapidly higher than the study temperature. The former case happens for low Tg epoxy resin like BDGE-HMDA. But in any case the method is very sensitive to the mechanical properties evolution of the material.  相似文献   

15.
The triplet-state characteristics of the Cy5 molecule related to trans-cis isomerization are investigated by means of ensemble and single molecule measurements. Cy5 has been used frequently in the past 10 years in single molecule spectroscopic applications, e.g., as a probe or fluorescence resonance energy transfer acceptor in large biomolecules. However, the unknown spectral properties of the triplet state and the lack of knowledge on the photoisomerization do not allow us to interpret precisely the unexpected single molecule behaviors. This limits the application of Cy5. The laser photolysis experiments demonstrate that the trans triplet state of Cy5 absorbs about 625 nm, the cis ground state absorbs about 690 nm, and the cis triplet state also absorbs about 690 nm. In other words, the T1-Tn absorptions largely overlap the ground-state absorptions for both trans and cis isomers, respectively. Furthermore, the observation of the cis triplet state indicates an important isomerization pathway from the trans-S1 state to the cis-T1 state upon excitation. The detailed spectra presented in this article let us clearly interpret the exact mechanisms responsible for several important and unexpected photophysical behaviors of single Cy5 molecules such as reverse intersystem crossing (RISC), the observation of dim states with a lower emission intensity and slightly red-shifted fluorescence, and unusual energy transfer from donor molecules to dark Cy5 molecules acting as acceptors in single molecule fluorescence resonance energy transfer (FRET) measurements. Spectral results show that the dim state in the single molecule fluorescence intensity time traces originated from cis-Cy5 because of a lower excitation rate, resulting from the red-shifted ground-state absorption of cis-Cy5 compared to that of the trans-Cy5.  相似文献   

16.
The use of a supra-molecular coarse-grained (CG) model for liquid water as solvent in molecular dynamics simulations of biomolecules represented at the fine-grained (FG) atomic level of modelling may reduce the computational effort by one or two orders of magnitude. However, even if the pure FG model and the pure CG model represent the properties of the particular substance of interest rather well, their application in a hybrid FG/CG system containing varying ratios of FG versus CG particles is highly non-trivial, because it requires an appropriate balance between FG-FG, FG-CG, and CG-CG energies, and FG and CG entropies. Here, the properties of liquid water are used to calibrate the FG-CG interactions for the simple-point-charge water model at the FG level and a recently proposed supra-molecular water model at the CG level that represents five water molecules by one CG bead containing two interaction sites. Only two parameters are needed to reproduce different thermodynamic and dielectric properties of liquid water at physiological temperature and pressure for various mole fractions of CG water in FG water. The parametrisation strategy for the FG-CG interactions is simple and can be easily transferred to interactions between atomistic biomolecules and CG water.  相似文献   

17.
Structure and dynamics of hydrated Au(+) have been investigated by means of molecular dynamics simulations based on ab initio quantum mechanical molecular mechanical forces at Hartree-Fock level for the treatment of the first hydration shell. The outer region of the system was described using a newly constructed classical three-body corrected potential. The structure was evaluated in terms of radial and angular distribution functions and coordination number distributions. Water exchange processes between coordination shells and bulk indicate a very labile structure of the first hydration shell whose average coordination number of 4.7 is a mixture of 3-, 4-, 5-, 6-, and 7-coordinated species. Fast water exchange reactions between first and second hydration shell occur, and the second hydration shell is exceptionally large. Therefore, the mean residence time of water molecules in the first hydration shell (5.6 ps/7.5 ps for t*= 0.5 ps/2.0 ps) is shorter than that in the second shell (9.4 ps/21.2 ps for t*= 0.5 ps/2.0 ps), leading to a quite specific picture of a "structure-breaking" effect.  相似文献   

18.
《Liquid crystals》1999,26(4):469-482
Molecular dynamics simulations are performed in this work at 393 and 323 K for a mesogenic molecule ( R )-1-methylheptyl 4\[4-(2-allyloxyethoxy)biphenyl-4-carbonyloxy]benzoate in the simulated smectics A and E, respectively, and in a vacuum at 300 K, for a period of 1.0ns. The trajectories obtained from molecular dynamics simulations allow us to investigate the dynamical behaviour of this mesogenic molecule in the simulated smectic phases. This dynamical behaviour of a single molecule is presented using the distributions of dihedral angles and rotational diffusion around the C-axis defined by the simulated cells. Simulation results indicate that, except for the bonds near the end of the spacer segment, the dihedral angles all exhibit a single Gaussian-like distribution in the smectic A and E phases. Fluctuations of a dihedral angle about its mean value are more restricted in the smectics A and E than in those simulated in a vacuum. The average value of the fluctuations of the dihedral angles at the bonds in the spacer is found to be about 2 fold larger than that of fluctuations in the tail of the same molecule in the smectic A and E phases. In the smectic A phase, the distribution of orientations of a molecule about its long axis in a 36 molecule cell in which the outer molecules are fixed is found to have three distinct peaks. This result shows that the orientational fluctuations of single molecules are limited by confinement due to neighbouring molecules, i.e. that the layers have short-range structural correlations. The orientational distributions show larger fluctuations at the ends of the molecules.  相似文献   

19.
NaCl hillocks have been grown on the NaCl(100) monocrystalline surface by simply making the tip of an atomic force microscope cantilever interact with the surface. A quantitative discussion about the hillock dissolution process as well as physical stability of these ionic surfaces has been made. Molecular dynamics simulations helped us to interpret the experimental data. An explanation for the hillock formation and dissolution phenomena is also discussed.  相似文献   

20.
Proteins are highly complex biopolymers, exhibiting a substantial degree of structural variability in their properly folded, native state. In the presence of denaturants, this heterogeneity is greatly enhanced, and fluctuations take place among vast numbers of folded and unfolded conformations via many different pathways. To better understand protein folding it is necessary to explore the structural and energetic properties of the folded and unfolded polypeptide chain, as well as the trajectories along which the chain navigates through its multi-dimensional conformational energy landscape. In recent years, single-molecule fluorescence spectroscopy has been established as a powerful tool in this research area, as it allows one to monitor the structure and dynamics of individual polypeptide chains in real time with atomic scale resolution using F?rster resonance energy transfer (FRET). Consequently, time trajectories of folding transitions can be directly observed, including transient intermediates that may exist along these pathways. Here we illustrate the power of single-molecule fluorescence with our recent work on the structure and dynamics of the small enzyme RNase H in the presence of the chemical denaturant guanidinium chloride (GdmCl). For FRET analysis, a pair of fluorescent dyes was attached to the enzyme at specific locations. In order to observe conformational changes of individual protein molecules for up to several hundred seconds, the proteins were immobilized on nanostructured, polymer coated glass surfaces specially developed to have negligible interactions with folded and unfolded proteins. The single-molecule FRET analysis gave insight into structural changes of the unfolded polypeptide chain in response to varying the denaturant concentration, and the time traces revealed stepwise transitions in the FRET levels, reflecting conformational dynamics. Barriers in the free energy landscape of RNase H were estimated from the kinetics of the transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号