首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Bond homolysis is one of the most fundamental bond cleavage mechanisms. Thus, understanding of bond homolysis influences the development of a wide range of chemistry. Photolytic bond homolysis and its reverse process have been observed directly using time-resolved spectroscopy. However, direct observation of reversible bond homolysis remains elusive. Here, we report the direct observation of reversible Co–Co bond homolysis using two-dimensional nuclear magnetic resonance exchange spectroscopy (2D EXSY NMR). The characterization of species involved in this homolysis is firmly supported by diffusion ordered NMR spectroscopy (DOSY NMR). The unambiguous characterization of the Co–Co bond homolysis process enabled us to study ligand steric and electronic factors that influence the strength of the Co–Co bond. Understanding of these factors will contribute to rational design of multimetallic complexes with desired physical properties or catalytic activity.

We report the first direct observation of reversible bond homolysis using EXSY NMR. This study revealed that electron donating groups weaken the Co–Co bond.  相似文献   

2.
It is extremely difficult to precisely edit a surface site on a typical nanoparticle catalyst without changing other parts of the catalyst. This precludes a full understanding of which site primarily determines the catalytic properties. Here, we couple experimental data collection with theoretical analysis to correlate rich structural information relating to atomically precise gold clusters with the catalytic performance for the click reaction of phenylacetylene and benzyl azide. We also identify a specific surface site that is capable of achieving high regioselectivity. We further conduct site-specific editing on a thiolate-protected gold cluster by peeling off two monomeric RS–Au–SR motifs and replacing them with two Ph2P–CH2–PPh2 staples. We demonstrate that the surface Au–Ph2P–CH2–PPh2–Au motifs enable extraordinary regioselectivity for the click reaction of alkyne and azide. The editing strategy for the surface motifs allows us to exploit previously inaccessible individual active sites and elucidate which site can explicitly govern the reaction outcome.

Editing surface motifs on gold cluster catalysts achieves high regioselectivity for the click reactions of azides and alkynes.  相似文献   

3.
Alkoxyamines and persistent nitroxides are important regulators of nitroxide-mediated radical polymerization (NMP). Since the polymerization time decreases with the increasing equilibrium constant K (k(d)/k(c)), i.e., the increasing rate constant k(d) of the homolysis of the C-ON bond between the polymer chain and the nitroxide moiety, the factors influencing the cleavage rate constants are of considerable interest. SG1-based alkoxyamines have turned out to be the most potent alkoxyamine family to use for NMP of various monomers. Therefore, it is of high interest to determine the factors which make SG1 derivatives better regulators than TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) derivatives. Contrary to what we had observed with TEMPO derivatives, we observed two relationships for the plot E(a) vs BDE(C-H), one for the nonpolar released alkyl radicals (E(a) (kJ/mol) = -133.0 + 0.72BDE) and the other one for the polar released alkyl radicals (E(a) (kJ/mol) = -137.0 + 0.69BDE). However, for both families (SG1 and TEMPO derivatives), the rate constants k(d) of the C-ON bond homolysis were correlated to the cleavage temperature T(c) (log(k(d)(s(-)(1))) = 1.51 - 0.058T(c)). Such correlations should help to design new alkoxyamines to use as regulators and to improve the tuning of NMP experiments.  相似文献   

4.
In nature, coordinated communication between different entities enables a group to accomplish sophisticated functionalities that go beyond those carried out by individual agents. The possibility of programming and developing coordinated communication networks at the nanoscale—based on the exchange of chemical messengers—may open new approaches in biomedical and communication areas. Here, a stimulus-responsive circular model of communication between three nanodevices based on enzyme-functionalized Janus Au–mesoporous silica capped nanoparticles is presented. The output in the community of nanoparticles is only observed after a hierarchically programmed flow of chemical information between the members.

A community of three nanodevices communicates through a hierarchically programmed circular flow of chemical information between members.  相似文献   

5.
Nanoparticles of metal–organic frameworks (nanoMOFs) boast superior properties compared to their bulk analogs, yet little is known about how common synthetic parameters dictate particle sizes. Here, we provide experimental evidence for the “seesaw” model of nanoMOF growth. Solution acidity, ligand excess, and reactant concentrations are decoupled and shown to form the key independent determinants of nanoMOF sizes, thereby validating the proposal that nanoMOFs arise from coupled equilibria involving ligand deprotonation and metal–ligand complexation. By achieving the first demonstration of a seesaw relationship between nanoMOF sizes and ligand excess, these results provide further proof of the model, as they required deliberate manipulation of relationships outlined by the model. Exploring the relative impacts of these parameters reveals that ligand excess has the greatest ability to decrease sizes, although low acidity and high concentrations can exhibit similar effects. As a complement to existing models of polymer formation and crystal growth, the seesaw model therefore offers a powerful tool for reliable control over nanoMOF sizes.

Nanoparticles of metal–organic frameworks (nanoMOFs) boast superior properties compared to their bulk analogs, yet little is known about how common synthetic parameters dictate particle sizes.  相似文献   

6.
Visible light driven nitrene transfer and insertion reactions of organic azides are an attractive strategy for the design of C–N bond formation reactions under mild reaction conditions, the challenge being lack of selectivity as a free nitrene reactive intermediate is usually involved. Herein is described an iron(iii) porphyrin catalysed sp3 C–H amination and alkene aziridination with selectivity by using organic azides as the nitrogen source under blue LED light (469 nm) irradiation. The photochemical reactions display chemo- and regio-selectivity and are effective for the late-stage functionalization of natural and bioactive compounds with complexity. Mechanistic studies revealed that iron porphyrin plays a dual role as a photosensitizer and as a catalyst giving rise to a reactive iron–nitrene intermediate for subsequent C–N bond formation.

An iron(iii) porphyrin catalysed sp3 C–H amination and alkene aziridination with broad substrate scope under mild conditions is conducted, with selectivity through the use of organic azides as the nitrogen source under blue LED light irradiation.  相似文献   

7.
Transition metal-catalysed functionalizations of inert C–H bonds to construct C–C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C–H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C–H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C–H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C–H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.

Transition metal-catalysed functionalizations of inert C–H bonds to construct C–C bonds represent an ideal route in the synthesis of valuable organic molecules.  相似文献   

8.
The synthesis of P-stereogenic building blocks is extremely difficult. Herein we report an efficient kinetic resolution of secondary phosphine oxides via a Le-Phos-catalyzed asymmetric allylation reaction with Morita–Baylis–Hillman carbonates. This method provides facile access to enantioenriched secondary and tertiary P-chiral phosphine oxides with broad substrate scope, both of which could serve as P-stereogenic synthons, and can be rapidly incorporated into a given scaffold bearing a P-stereocenter. The highly desirable late stage modifications demonstrate the practicability of our method and can be a critical contribution to obtaining optimal P-chiral catalysts and ligands.

Herein we report an efficient kinetic resolution of secondary phosphine oxides via a Le-Phos-catalyzed asymmetric allylation reaction with Morita–Baylis–Hillman carbonates.  相似文献   

9.
The replacement of HgCl2/C with Au/C as a catalyst for acetylene hydrochlorination represents a significant reduction in the environmental impact of this industrial process. Under reaction conditions atomically dispersed cationic Au species are the catalytic active site, representing a large-scale application of heterogeneous single-site catalysts. While the metal nuclearity and oxidation state under operating conditions has been investigated in catalysts prepared from aqua regia and thiosulphate, limited studies have focused on the ligand environment surrounding the metal centre. We now report K-edge soft X-ray absorption spectroscopy of the Cl and S ligand species used to stabilise these isolated cationic Au centres in the harsh reaction conditions. We demonstrate the presence of three distinct Cl species in the materials; inorganic Cl, Au–Cl, and C–Cl and how these species evolve during reaction. Direct evidence of Au–S interactions is confirmed in catalysts prepared using thiosulfate precursors which show high stability towards reduction to inactive metal nanoparticles. This stability was clear during gas switching experiments, where exposure to C2H2 alone did not dramatically alter the Au electronic structure and consequently did not deactivate the thiosulfate catalyst.

In situ chlorine and sulphur XAS shows a dynamic ligand environment around cationic Au single-sites during acetylene hydrochlorination.  相似文献   

10.
Control over the spatial distribution of components in metal–organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal–organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core–shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core–shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.

Core–shell metal–organic framework nanoparticles have been synthesised in which the internal interface and distribution of components is found to be highly tunable using simple variations in reaction conditions.  相似文献   

11.
Exercising fine control over the synthesis of metal–organic frameworks (MOFs) is key to ensuring reproducibility of physical properties such as crystallinity, particle size, morphology, porosity, defectivity, and surface chemistry. The principle of modulated self-assembly – incorporation of modulator molecules into synthetic mixtures – has emerged as the primary means to this end. This perspective article will detail the development of modulated synthesis, focusing primarily on coordination modulation, from a technique initially intended to cap the growth of MOF crystals to one that is now used regularly to enhance crystallinity, control particle size, induce defectivity and select specific phases. The various mechanistic driving forces will be discussed, as well as the influence of modulation on physical properties and how this can facilitate potential applications. Modulation is also increasingly being used to exert kinetic control over self-assembly; examples of phase selection and the development of new protocols to induce this will be provided. Finally, the application of modulated self-assembly to alternative materials will be discussed, and future perspectives on the area given.

This Perspective gives an overview of the modulated self-assembly of MOFs – incorporating additives and alternative precursors into syntheses – focusing on its varying influences on crystallization mechanisms, physical properties, and applications.  相似文献   

12.
A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides. The reaction proceeds via a selective reaction between the l-peptide and the l-sugar producing an Amadori rearrangement byproduct and leaving d-glyceraldehyde in excess. Solubility considerations in the synthesis of proline–valine (pro–val) peptides allow nearly enantiopure pro–val to be formed starting from racemic pro and nearly racemic (10%) ee val. (ee = enantiomeric excess = (|dl|)/(d + l)) Thus enantioenrichment of glyceraldehyde is achieved in a system with minimal initial chiral bias. This work demonstrates synergy between amino acids and sugars in the emergence of biological homochirality.

A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides.  相似文献   

13.
Evolution has converged on cation–π interactions for recognition of quaternary alkyl ammonium groups such as trimethyllysine (Kme3). While computational modelling indicates that Trp provides the strongest cation–π interaction of the native aromatic amino acids, there is limited corroborative data from measurements within proteins. Herein we investigate a Tyr to Trp mutation in the binding pocket of the HP1 chromodomain, a reader protein that recognizes Kme3. Binding studies demonstrate that the Trp-mediated cation–π interaction is about −5 kcal mol−1 stronger, and the Y24W crystal structure shows that the mutation is not perturbing. Quantum mechanical calculations indicate that greater enthalpic binding is predominantly due to increased cation–π interactions. NMR studies indicate that differences in the unbound state of the Y24W mutation lead to enthalpy–entropy compensation. These results provide direct experimental quantification of Trp versus Tyr in a cation–π interaction and afford insight into the conservation of aromatic cage residues in Kme3 reader domains.

In this work, we experimentally validate that tryptophan provides the strongest cation–π binding interaction among aromatic amino acids and also lend insight into the importance of residue identity in trimethyllysine recognition by reader proteins.  相似文献   

14.
The ability to mediate the kinetic properties and dissociation activation energies (Ea) of bound guests by controlling the characteristics of “supramolecular lids” in host–guest molecular systems is essential for both their design and performance. While the synthesis of such systems is well advanced, the experimental quantification of their kinetic parameters, particularly in systems experiencing fast association and dissociation dynamics, has been very difficult or impossible with the established methods at hand. Here, we demonstrate the utility of the NMR-based guest exchange saturation transfer (GEST) approach for quantifying the dissociation exchange rates (kout) and activation energy (Ea,out) in host–guest systems featuring fast dissociation dynamics. Our assessment of the effect of different monovalent cations on the extracted Ea,out in cucurbit[7]uril:guest systems with very fast kout highlights their role as “supramolecular lids” in mediating a guest''s dissociation Ea. We envision that GEST could be further extended to study kinetic parameters in other supramolecular systems characterized by fast kinetic properties and to design novel switchable host–guest assemblies.

GEST-NMR is utilized for quantifying the dissociation activation energy (Ea,out) in host-guest systems featuring fast dissociation dynamics.  相似文献   

15.
The strategy of aggregation-induced emission enhancement (AIEE) has been proven to be efficient in wide areas and has recently been adopted in the field of metal nanoclusters. However, the relationship between atomically precise clusters and AIEE is still unclear. Herein, we have successfully obtained two few-atom heterometallic gold–silver hepta-/decanuclear clusters, denoted Au6Ag and Au9Ag, and determined their structures by X-ray diffraction and mass spectrometry. The nature of the AuI⋯AgI interactions thereof is demonstrated through energy decomposition analysis to be far-beyond typical closed-shell metal–metal interaction dominated by dispersion interaction. Furthermore, a positive correlation has been established between the particle size of the nanoaggregates and the photoluminescence quantum yield for Au6Ag, manifesting AIEE control upon varying the stoichiometric ratio of Au : Ag in atomically-precise clusters.

The strategy of aggregation-induced emission enhancement (AIEE) has been proven to be efficient in wide areas and has recently been adopted in the field of metal nanoclusters.  相似文献   

16.
Control over site-selectivity is a critical challenge for practical application of catalytic C–H functionalization reactions in organic synthesis. Despite the seminal breakthrough of the Pd-catalyzed C(sp2)–H arylation of simple arenes via a concerted metalation–deprotonation (CMD) pathway in 2006, understanding the site-selectivity of the reaction still remains elusive. Here, we have comprehensively investigated the scope, site-selectivity, and mechanism of the Pd-catalyzed direct C–H arylation reaction of simple arenes. Counterintuitively, electron-rich arenes preferably undergo meta-arylation without the need for a specifically designed directing group, whereas electron-deficient arenes bearing fluoro or cyano groups exhibit high ortho-selectivity and electron-deficient arenes bearing bulky electron-withdrawing groups favor the meta-product. Comprehensive mechanistic investigations through a combination of kinetic measurements and stoichiometric experiments using arylpalladium complexes have revealed that the Pd-based catalytic system works via a cooperative bimetallic mechanism, not the originally proposed monometallic CMD mechanism, regardless of the presence of a strongly coordinating L-type ligand. Notably, the transmetalation step, which is influenced by a potassium cation, is suggested as the selectivity-determining step.

The transmetalation step, not the C–H activation step, is suggested as the selectivity-determining step in Pd-catalyzed C–H arylation of simple arenes.  相似文献   

17.
Redox-active metal–organic frameworks (MOFs) are promising materials for a number of next-generation technologies, and recent work has shown that redox manipulation can dramatically enhance electrical conductivity in MOFs. However, ligand-based strategies for controlling conductivity remain under-developed, particularly those that make use of reversible redox processes. Here we report the first use of ligand n-doping to engender electrical conductivity in a porous 3D MOF, leading to tunable conductivity values that span over six orders of magnitude. Moreover, this work represents the first example of redox switching leading to reversible conductivity changes in a 3D MOF.

Redox-active ligands are used to reversibly tune electrical conductivity in a porous 3D metal–organic framework (MOF).  相似文献   

18.
The current laboratory practices of organic synthesis are labor intensive, impose safety and environmental hazards, and hamper the implementation of artificial intelligence guided drug discovery. Using a combination of reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions with prepacked capsules. The machine conducts coupling reactions and delivers the purified products with minimal user involvement. Two desirable reaction classes – the synthesis of saturated N-heterocycles and reductive amination – were implemented, along with multi-step sequences that provide drug-like organic molecules in a fully automated manner. We envision that this system will serve as a console for developers to provide synthetic methods as integrated, user-friendly packages for conducting organic synthesis in a safe and convenient fashion.

Using a combination of reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions using prepacked capsules with minimal user involvement.  相似文献   

19.
Photochemistry provides a sustainable pathway for organic transformations by inducing radical intermediates from substrates through electron transfer process. However, progress is limited by heterogeneous photocatalysts that are required to be efficient, stable, and inexpensive for long-term operation with easy recyclability and product separation. Here, we report that boron carbonitride (BCN) ceramics are such a system and can reduce organic halides, including (het)aryl and alkyl halides, with visible light irradiation. Cross-coupling of halides to afford new C–H, C–C, and C–S bonds can proceed at ambient reaction conditions. Hydrogen, (het)aryl, and sulfonyl groups were introduced into the arenes and heteroarenes at the designed positions by means of mesolytic C–X (carbon–halogen) bond cleavage in the absence of any metal-based catalysts or ligands. BCN can be used not only for half reactions, like reduction reactions with a sacrificial agent, but also redox reactions through oxidative and reductive interfacial electron transfer. The BCN photocatalyst shows tolerance to different substituents and conserved activity after five recycles. The apparent metal-free system opens new opportunities for a wide range of organic catalysts using light energy and sustainable materials, which are metal-free, inexpensive and stable.

A metal-free photoredox system was introduced for the transformation of organic halides to afford C–H, C–C, and C–S bonds without the addition of any metals, ligands, extra reductants or additives.  相似文献   

20.
Non-noble metal isolated single atom site (ISAS) catalysts have attracted much attention due to their low cost, ultimate atom efficiency and outstanding catalytic performance. Herein, atomically dispersed Fe atoms are prepared by a covalent organic framework (COF)-absorption–pyrolysis strategy. The obtained Fe ISASs anchored on COF-derived N-doped carbon nanospheres (Fe-ISAS/CN) served as a multi-functional catalyst in electro-catalysis and organic catalysis, exhibiting better catalytic performance than commercial Pt/C for the ORR with good stability and methanol tolerance. Besides electro-catalysis, the Fe-ISAS/CN also showed outstanding catalytic performance in organic reactions, such as the selective oxidation of ethylbenzene to acetophenone and dehydrogenation of 1,2,3,4-tetrahydroquinoline with excellent reactivity, selectivity, stability and recyclability. Co and Ni ISAS materials can also be prepared by this method, suggesting that it is a general strategy to obtain metal ISAS catalysts. This work will provide new insight into the design of COF-derived metal ISAS multi-functional catalysts for electro-catalysis and organic reactions using rationally designed synthetic routes and the optimized structure of substrates.

Fe isolated single-atom sites anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号