首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
4-Fluoro-9-anthracenecarboxylic acid (4F-9AC) is a thermally reversible (T-type) photomechanical molecular crystal. The photomechanical response is driven by a [4 + 4] photodimerization reaction, while the photodimer dissociation determines the reset time. In this paper, both the chemical kinetics of dimer dissociation (using a microscopic fluorescence-recovery-after-photobleaching experiment) and mechanical reset dynamics (by imaging bending microneedles) for single 4F-9AC crystals are measured. The dissociation kinetics depend strongly on the initial concentration of photodimer, slowing down and becoming nonexponential at high dimer concentrations. This dose-dependent behavior is also observed in the mechanical response of bending microneedles. A new feature in the photomechanical behavior is identified: the ability of a very weak control beam to suppress dimer dissociation after large initial dimer conversions. This phenomenon provides a way to optically control the mechanical response of this photomechanical crystal. To gain physical insight into the origin of the nonexponential recovery curves, the experimental results are analyzed in terms of a standard first-order kinetic model and a nonlinear Finke–Watzky (FW) model. The FW model can qualitatively reproduce the transition from exponential to sigmoidal recovery with larger initial conversions, but neither model can reproduce the suppression of the recovery in the presence of a weak holding beam. These results highlight the need for more sophisticated theories to describe cooperative phenomena in solid-state crystalline reactions, as well as demonstrating how this behavior could lead to new properties and/or improved performance in photomechanical materials.

The chemical and mechanical recovery rates of crystalline 4-fluoro-9-anthracenecarboxylic acid, a thermally reversible photomechanical material, can be controlled by both the intensity of the photodimerization pulse and the use of a weak hold beam.  相似文献   

2.
Bicyclic or tricyclic nitrogen-containing heterocyclic scaffolds were constructed rapidly by intramolecular nucleophilic aromatic substitution of metallated nitriles tethered by a urea linkage to a series of electronically unactivated heterocyclic precursors. The substitution reaction constitutes a ring expansion, enabled by the conformationally constrained tether between the nitrile and the heterocycle. Attack of the metallated urea leaving group on the nitrile generates a hydantoin that bridges the polycyclic products. X-ray crystallography reveals ring-dependant strain within the hydantoin.

Bicyclic or tricyclic nitrogen-containing heterocyclic scaffolds were constructed rapidly by ring expanding intramolecular SNAr on a series of electronically unactivated heterocyclic precursors.  相似文献   

3.
Medium-sized rings have much promise in medicinal chemistry, but are difficult to make using direct cyclisation methods. In this minireview, we highlight the value of ring expansion strategies to address this long-standing synthetic challenge. We have drawn on recent progress (post 2013) to highlight the key reaction design features that enable successful ‘normal-to-medium’ ring expansion for the synthesis of these medicinally important molecular frameworks, that are currently under-represented in compound screening collections and marketed drugs in view of their challenging syntheses.

Ring expansion strategies are ideally suited to make synthetically challenging, medium-sized rings with much potential in medicinal chemistry.  相似文献   

4.
Herein, we report on our studies on the reaction of organoselenium compounds with triazoles under thermal conditions using simple Rh(ii) catalysts. These reactions do not provide the product of classic rearrangement reactions. Instead two different cascade reactions were uncovered. While allyl selenides react in a cascade of sigmatropic rearrangement and selenium-mediated radical cyclization reaction to give dihydropyrroles, cinnamyl selenides undergo a double rearrangement reaction cascade involving a final aza-Cope reaction to give the product of 1,3-difunctionalization. Theoretical and experimental studies were conducted to provide an understanding of the reaction mechanism of these cascade reactions. The former provide an important insight into fundamental question on the nature of the ylide intermediate in rearrangement reactions and reveal that organoselenium compounds take up multiple roles in rearrangement reactions and mediate a free ylide reaction mechanism.

Herein, we report on our studies on the reaction of organoselenium compounds with triazoles under thermal conditions using simple Rh(ii) catalysts.  相似文献   

5.
This work describes unique molecular motions of ferrocene-containing interlocked molecules observed by single-crystal X-ray crystallography. The rotational flexibility of ferrocene is achieved using combinations of ferrocene-tethered ammonium and 30-membered ring dibenzo-crown ether. By contrast, ferrocene was locked in the complex with an 18-membered ring dibenzo-crown ether and CH2Cl2. When the complex was heated at 358 K, CH2Cl2 was removed from the complex, which led to drastic structural changes, including a semieclipsed-to-disordered transition of ferrocene and flipping of the dibenzo-crown ether.

Unique molecular motions, reversible internal rotation of ferrocene and flipping of crown ether are observed in DB30C10 and DB18C6-containing interlocked molecules, respectively.  相似文献   

6.
A sustainable, new synthesis of oxalamides, by acceptorless dehydrogenative coupling of ethylene glycol with amines, generating H2, homogeneously catalyzed by a ruthenium pincer complex, is presented. The reverse hydrogenation reaction is also accomplished using the same catalyst. A plausible reaction mechanism is proposed based on stoichiometric reactions, NMR studies, X-ray crystallography as well as observation of plausible intermediates.

Ruthenium catalyzed acceptorless dehydrogenative coupling of ethylene glycol and amines to oxalamides is reported. The reverse hydrogenation reaction is also accomplished.  相似文献   

7.
Singlet fission (SF) is an exciton multiplication process with the potential to raise the efficiency limit of single junction solar cells from 33% to up to 45%. Most chromophores generally undergo SF as solid-state crystals. However, when such molecules are covalently coupled, the dimers can be used as model systems to study fundamental photophysical dynamics where a singlet exciton splits into two triplet excitons within individual molecules. Here we report the synthesis and photophysical characterization of singlet fission of a hexacene dimer. Comparing the hexacene dimer to analogous tetracene and pentacene dimers reveals that excess exoergicity slows down singlet fission, similar to what is observed in molecular crystals. Conversely, the lower triplet energy of hexacene results in an increase in the rate of triplet pair recombination, following the energy gap law for radiationless transitions. These results point to design rules for singlet fission chromophores: the energy gap between singlet and triplet pair should be minimal, and the gap between triplet pair and ground state should be large.

We report the synthesis and photophysical characterization of highly exoergic singlet fission in a hexacene dimer revealing exciton dynamics that follow the energy gap law.  相似文献   

8.
Molecular dimers have been frequently found to play an important role in room temperature phosphorescence (RTP), but its inherent working mechanism has remained unclear. Herein a series of unique characteristics, including singlet excimer emission and thermally activated delayed fluorescence, were successfully integrated into a new RTP luminogen of CS-2COOCH3 to clearly reveal the excited-state process of RTP and the special role of molecular dimers in persistent RTP emission.

The first purely organic room temperature phosphorescence (RTP) luminogen, with singlet excimer emission and thermally activated delayed fluorescence (TADF) effect, was successfully developed.   相似文献   

9.
The first total synthesis of penicimutanin A (1) was achieved within 10 steps (LLS). Key innovations in this synthesis consist of (1) a highly efficient electro-oxidative dearomatization; (2) an unprecedented bisoxirane-directed intermolecular aldol reaction from the sterically hindered face of the ketone and (3) the diastereoselective one-step Meerwein–Eschenmoser–Claisen rearrangement enabling the construction of vicinal quaternary stereocenters. Related family members e.g. penicimutanolone (3) and penicimutatin (5) have also been synthesized alongside, elucidating their absolute configurations, hence the absolute configuration of 1.

The first total synthesis of penicimutanin A (1) was achieved within 10 steps (LLS).  相似文献   

10.
Herein we describe the dearomatization of aryl sulfoxides with difluoroenol silyl ether (DFESE) using a rearrangement/addition protocol. The selection of the sulfoxide activator determines whether one or two difluoroalkyl groups are incorporated into dearomatized products. Using TFAA can deliberately halt the reaction at the mono-difluoroalkylated dearomatized intermediate formed via a [3,3]-rearrangement, which can be further trapped by external nucleophiles to give mono-difluoroalkylated alicycles. In contrast, switching to Tf2O enhances the electrophilicity of dearomatized intermediates, thus allowing for the adoption of a second DFESE to produce dual-difluoroalkylated alicycles.

Herein we describe the dearomatization of aryl sulfoxides with difluoroenol silyl ether (DFESE) using a rearrangement/addition protocol.  相似文献   

11.
Rubrolones, isatropolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity. They share similar aglycone skeletons but differ in their sugar moieties, and rubterolones in particular have a rare deoxysugar antiarose of unknown biosynthetic provenance. During our previously reported biosynthetic elucidation of the tropolone ring and pyridine moiety, gene inactivation experiments revealed that RubS3 is involved in sugar moiety biosynthesis. Here we report the in vitro characterization of RubS3 as a bifunctional reductase/epimerase catalyzing the formation of TDP-d-antiarose by epimerization at C3 and reduction at C4 of the key intermediate TDP-4-keto-6-deoxy-d-glucose. These new findings not only explain the biosynthetic pathway of deoxysugars in rubrolone-like natural products, but also introduce RubS3 as a new family of reductase/epimerase enzymes with potential to supply the rare antiarose unit for expanding the chemical space of glycosylated natural products.

Rubrolones, isarubrolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity.  相似文献   

12.
We present herein an unconventional tandem [3,3]-sigmatropic rearrangement/[2 + 2] cycloaddition of simple dipropargylphosphonates to deliver a range of bicyclic polysubstituted cyclobutenes and cyclobutanes under Ag/Co relay catalysis. An interesting switch from allene–allene to allene–alkyne cycloaddition was observed based on the substitution of the substrates, which further diversified the range of compounds accessible from this practical method. Significantly, preliminary biological screening of these new compounds identified promising candidates as suppressors of cellular proliferation.

In situ generation of allenes through [3,3]-sigmatropic rearrangement of propargylphosphonates. Divergent allene–allene or allene–alkyne cycloaddition by Ag/Co relay catalysis. Products as promising suppressors of cellular proliferation.  相似文献   

13.
A chiral N,N′-dioxide/cobalt(ii) complex catalyzed highly diastereoselective and enantioselective tandem aza-Piancatelli rearrangement/intramolecular Diels–Alder reaction has been disclosed. Various valuable hexahydro-2a,5-epoxycyclopenta[cd]isoindoles bearing six contiguous stereocenters have been obtained in good yields with excellent diastereo- and enantio-selectivities from a wide range of both readily available 2-furylcarbinols and N-(furan-2-ylmethyl)anilines.

An asymmetric aza-Piancatelli rearrangement/Diels–Alder cascade reaction between 2-furylcarbinols and N-(furan-2-ylmethyl)anilines was realized by using a chiral N,N′-dioxide/cobalt(ii) complex catalyst.  相似文献   

14.
The length and constitution of spacers linking three 2,6-pyridinedicarboxamide units in a molecular strand influence the tightness of the resulting overhand (open-trefoil) knot that the strand folds into in the presence of lanthanide(iii) ions. The use of β-hairpin forming motifs as linkers enables a metal-coordinated pseudopeptide with a knotted tertiary structure to be generated. The resulting pseudopeptide knot has one of the highest backbone-to-crossing ratios (BCR)—a measure of knot tightness (a high value corresponding to looseness)—for a synthetic molecular knot to date. Preorganization in the crossing-free turn section of the knot affects aromatic stacking interactions close to the crossing region. The metal-coordinated pseudopeptide knot is compared to overhand knots with other linkers of varying tightness and turn preorganization, and the entangled architectures characterized by NMR spectroscopy, ESI-MS, CD spectroscopy and, in one case, X-ray crystallography. The results show how it is possible to program specific conformational properties into different key regions of synthetic molecular knots, opening the way to systems where knotting can be systematically incorporated into peptide-like chains through design.

Spacers linking 2,6-pyridinedicarboxamide units influence the tightness of the corresponding lanthanide-coordinated overhand knot. β-Hairpin forming motifs generate a metal-coordinated pseudopeptide with a knotted tertiary structure.  相似文献   

15.
The ability to change polymer properties has in the past largely been a factor of modulating the molecular weight, molecular weight distribution breadth, crosslinking, or branching. The use of controlled MWD shape has recently emerged as a promising avenue towards modifying polymer properties. Taking advantage of molecular weight distribution shape, we report a simple and efficient approach for tuning material properties in polystyrene-block-polyisoprene-block-polystyrene (SIS) thermoplastic elastomers (TPEs). We find that the skew of the MWD function governs tensile properties and can be used as a handle to predictably vary polymer toughness while reducing energy dissipation.

Taking advantage of molecular weight distributions shape, we report a simple and efficient approach for predictably tuning material properties for thermoplastic elastomers.  相似文献   

16.
The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). The mean volumetric thermal expansion coefficient is 168.8 × 10−6 K−1 and the mean uniaxial thermal expansion coefficient is 71.4 × 10−6 K−1, based on 745 and 1129 different observations, respectively. Normal and anomalous coefficients can be identified using these values and the associated standard deviations. The anisotropy of the thermal expansion is also evaluated and found to have a very broad distribution. 4719 different structures, comprising 4093 different molecular compounds and 626 additional polymorphs have been analyzed on their thermal expansion properties. Approximately 34% of these structures may have at least one orthogonal axis with negative thermal expansion, much more than generally believed. Moreover 127 structures have been identified which could have negative volumetric thermal expansion. Experimental validation using a robust protocol with data collected at more than 2 different temperatures is required to validate these cases.

The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). Negative uniaxial thermal expansion is much more common than generally believed.  相似文献   

17.
Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine–diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering, significant differences were observed in their ability to support sensitive primary neurons. Contact angle and labelling experiments revealed that differential presentation of lysine moieties at the fibre surface did not affect neuronal viability; however the mobility of phenylalanine residues at the nanofibre surface, elucidated through solid- and gel-state NMR studies and confirmed through tethered bilayer lipid membrane experiments, was found to be the determining factor in governing the suitability of a given peptide as a scaffold for primary neurons. This work offers new insights into characterising and controlling the nanofibre surface at the molecular level.

The mobility of hydrophobic moieties at a peptide nanofibre surface determines its suitability as a scaffold for sensitive primary cells.  相似文献   

18.
Herein a regioselective addition/annulation strategy of ferrocenyl (Fc) thioamides with alkynes to construct thienylferrocene (ThienylFc) structures, involving a rhodium-catalyzed C–H activation, an unusual C2-selective addition of 1,3-diyne, and an unexpected intramolecular sulfur-transfer rearrangement process is described. In this protocol, thioamide not only serves as a directing group to activate the ortho-C–H bond of the ferrocene, but also as a sulfur source to form the thiophene ring. The resulting carboxylic ester group after sulfur transfer can act as a linkage to construct extended π-conjugated ferrocenes (OCTFc) with luminescent properties. ThienylFc displays effective fluorescence quenching due to the photoinduced electron transfer (PET) from the Fc unit to the excited luminophore, which turns out to be a promising type of redox molecular switch. OCTFc exhibit relatively strong emission owing to their intramolecular charge transfer (ICT) characteristics. The ring-fused strategy is herein employed for the first time to construct luminescent materials based on ferrocenes, which provides inspiration for the development of novel organic optoelectronic materials, such as electroluminescent materials based on ferrocenes.

Regioselective addition/annulation of ferrocenyl thioamides with 1,3-diynes has been developed to construct extended π-conjugated ferrocenes with luminescent properties.  相似文献   

19.
A catalytic asymmetric conjugate addition/Schmidt-type rearrangement of vinyl azides and (E)-alkenyloxindoles was realized. It afforded a variety of optically active 3,2′-pyrrolinyl spirooxindoles with high yields (up to 98%), and excellent diastereo- and enantioselectivities (up to 98% ee, >19 : 1 dr), even at the gram-scale in the presence of a chiral N,N′-dioxide–nickel(ii) complex. In addition, a possible catalytic cycle and transition state model were proposed to rationalize the stereoselectivity.

Lewis acid catalyzed asymmetric synthesis of 3,2′-pyrrolinyl spirooxindole skeletons via conjugate addition/Schmidt-type rearrangement of vinyl azides and (E)-alkenyloxindoles.  相似文献   

20.
N-Substituted tetrahydroquinoxalines (37 examples) were step-economically obtained in good yield (<97%) and ee (<99%) with readily available substrates. The reaction proceeds through an interesting regioselective Heyns rearrangement/enantioselective transfer hydrogenation in one pot. The substrate scope and the reaction mechanism were systematically investigated.

N-Substituted tetrahydroquinoxalines were step-economically obtained in good yield and ee with readily available substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号