首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatotoxicity is a serious problem faced by thousands of clinical drugs, and drug-induced liver injury (DILI) caused by chronic administration or overdose has become a major biosafety issue. However, the near-infrared (NIR) fluorescent probes currently used for liver injury detection still suffer from poor liver targeting ability and low sensitivity. Enzyme-activated fluorogenic probes with powerful in situ targeting ability are the key to improving the imaging effect of liver injury. Herein, we rationally designed a leucine aminopeptidase (LAP) activated fluorogenic probe hCy-CA-LAP, which greatly improved the hepatocyte-targeting capability by introducing a cholic acid group. The probe hCy-CA-LAP is converted into a high-emission hCy-CA fluorophore in the presence of LAP, showing high selectivity, high sensitivity and low detection limit (0.0067 U mL−1) for LAP, and successfully realizes the sensitive detection of small fluctuations of LAP in living cells. Moreover, the probe can achieve effective in situ accumulation in the liver, thereby achieving precise imaging and evaluation of two different types of drug-induced hepatotoxicity in vivo. Therefore, the probe hCy-CA-LAP may be a potential tool for exploring the roles of LAP and evaluating the degree of DILI.

We rationally designed a leucine aminopeptidase (LAP) activated fluorogenic probe hCy-CA-LAP with high hepatocyte-targeting ability for accurate and sensitive imaging of DILI.  相似文献   

2.
We have found a specific reaction between ketone 1 and peroxynitrite (ONOO-), rather than other reactive oxygen species and reactive nitrogen species generated in the biological system. On the basis of this reaction, we have successfully developed a new fluorescent probe HKGreen-1, which is highly selective for the detection of peroxynitrite in living cells. Before the oxidation with peroxynitrite, the dichlorofluorescein part is masked and the probe is nonfluorescent. However, upon reaction with peroxynitrite, the fluorophore is released, resulting in strong enhancement in fluorescence intensity.  相似文献   

3.
BzSe-Cy is a small-molecule fluorescent probe containing Se, which can respond reversibly to changes in ONOO(-) or reduced ascorbate and exhibit high sensitivity and selectivity for ONOO(-).  相似文献   

4.
We have developed a near-IR reversible fluorescent probe containing an organoselenium functional group that can be used for the highly sensitive and selective monitoring of peroxynitrite oxidation and reduction events under physiological conditions. The probe effectively avoids the influence of autofluorescence in biological systems and gave positive results when tested in both aqueous solution and living cells. Real-time images of cellular peroxynitrite were successfully acquired.  相似文献   

5.
《中国化学快报》2022,33(10):4478-4494
Drug-induced liver injury (DILI) is a common and serious adverse drug reaction. At present, DILI is perfectly diagnozed in clinical settings using Roussel Uclaf causality assessment method (RUCAM) in its original version published 1993 and its updated version published 2016, well established worldwide as a diagnostic algorithm with a high sensitivity and specificity. Nevertheless, the search for additional detection methods supporting RUCAM continues. In recent years, with the development of optical imaging technology, fluorescent probes have gradually shown great advantages in the detection and diagnosis of DILI markers such as high sensitivity, anti-interference, real-time monitoring and non-invasive measurement. In this review, the recent advances of fluorescent probes for evaluation of DILI in experimental studies were summarized according to various markers of DILI. We believe that learning about the design and practical application of these probes will contribute to the further development of detection sensors for DILI markers.  相似文献   

6.
Peng T  Yang D 《Organic letters》2010,12(21):4932-4935
A novel fluorescent probe, HKGreen-3, for sensing peroxynitrite is designed on the basis of the rhodol scaffold and a peroxynitrite-specific oxidation reaction. The probe turns out to be highly sensitive and selective for detecting peroxynitrite in both chemical and biological systems.  相似文献   

7.
Yu F  Song P  Li P  Wang B  Han K 《The Analyst》2012,137(16):3740-3749
We present the design, synthesis, spectroscopy, and biological applications of PyBor, a new type of fluorescent probe for peroxynitrite detection in aqueous solution and living cells. The probe employs pyrene as the fluorophore, and is equipped with a chemically responsive unit boronate. The fluorescent probe can selectively detect peroxynitrite with fluorimetric determination and high-performance liquid chromatography analyses in aqueous solution and RAW264.7 cells intracellular free extracts. We also study our probe to time dependent peroxynitrite release from 3-morpholinylsydnonimine hydrochloride. Confocal microscopy experiments using mouse macrophage cell line RAW264.7 show that PyBor is able to detect the different intracellular peroxynitrite levels. In addition, we have performed quantum chemical calculations with TD-DFT/M06/TZVP level with COSMO solvation model basis sets using a suite of Gaussian 09 programs to provide insights into the structure optical properties of PyBor and PyOH.  相似文献   

8.
Given that peroxynitrite (ONOO?) is profoundly associated with health and diseases, a new fluorescent probe ABT was designed and synthesized for detection of ONOO?. ABT manifested not only ratiometric fluorescence signals simultaneously in response to concentrations of ONOO? (within 10?s), but high selectivity and sensitivity towards ONOO? over other physiological relevant species (detection limit?=?26.3?nM). Moreover, ABT worked in a broad pH range with biological relevance. Thus, ABT could be used to quantitative detection of ONOO? concentration and has the potential to efficiently monitor ONOO? in living organisms.  相似文献   

9.
Herein, we developed the first ratiometric fluorescent probe for apoptosis detection. This probe incorporates selectively into the outer leaflet of the cell plasma membrane and senses the loss of the plasma membrane asymmetry occurring during the early steps of apoptosis. The high specificity to the plasma membranes was achieved by introduction into the probe of a membrane anchor, composed of a zwitterionic group and a long (dodecyl) hydrophobic tail. The fluorescence reporter of this probe is 4'-(diethylamino)-3-hydroxyflavone, which exhibits excited-state intramolecular proton transfer (ESIPT), resulting in two-band emission highly sensitive to the lipid composition of the biomembranes. Fluorescence spectroscopy, flow cytometry, and microscopy measurements show that the ratio of the two emission bands of the probe changes dramatically in response to apoptosis. This response reflects the changes in the lipid composition of the outer leaflet of the cell plasma membrane because of the exposure of the anionic phospholipids from the inner leaflet at the early steps of apoptosis. Being ratiometric, the response of the new probe can be easily quantified on an absolute scale. This allows monitoring by laser scanning confocal microscopy the degree and spatial distribution of the apoptotic changes at the cell plasma membranes, a feature that can be hardly achieved with the commonly used fluorescently labeled annexin V assay.  相似文献   

10.
In the presence of the flavonols myricetin and quercetin, oxidation of hydroethidine (HE) by superoxide yielded ethidium (E+) instead of 2-hydroxyethidium (2-OH-E+). As a known pro-oxidant, myricetin alone was also found to be able to catalyze air oxidation of HE yielding exclusively E+. The reaction is inhibited by added superoxide dismutase, suggesting that superoxide is involved in the rate limiting step of the oxidation.  相似文献   

11.
12.
Yang XF  Guo XQ  Zhao YB 《Talanta》2002,58(5):883-890
A flow injection (FI) method with on-line preconcentration using a mini-column loaded with 8-hydroxyquinoline immobilized on controlled pore glass (CPG-8HQ) is described for the determination of trace metals by ion chromatography (IC) with pyridine-2-6-dicarboxylic acid (PDCA) as the eluent. Copper, cadmium, lead, zinc, nickel and iron were determined at ppb level after post-column derivatization with 4-(2-pyridylazo)-resorcinol (PAR). The detection limits (3sigma) for the FI/IC system were 8.27, 0.89, 0.09, 0.06, 0.09 and 0.07 g l(-1) for Pb(2+), Cd(2+), Cu(2+) Ni(2+), Zn(2+) and Fe(3+), respectively, using 5 ml sample volume. The method was applied to the analysis of Malaysian natural waters.  相似文献   

13.
Peroxynitrite (ONOO) is a powerful and short-lived oxidant formed in vivo, which can react with most biomolecules directly. To fully understand the roles of ONOO in cell biology, improved methods for the selective detection and real-time analysis of ONOO are needed. We present a water-soluble, luminescent europium(iii) probe for the rapid and sensitive detection of peroxynitrite in human serum, living cells and biological matrices. We have utilised the long luminescence lifetime of the probe to measure ONOO in a time-resolved manner, effectively avoiding the influence of autofluorescence in biological samples. To demonstrate the utility of the Eu(iii) probe, we monitored the production of ONOO in different cell lines, following treatment with a cold atmospheric plasma device commonly used in the clinic for skin wound treatment.

Reactivity-based europium(iii) probe displays excellent selectivity for peroxynitrite (ONOO), enabling its time-resolved luminescence detection in living cells.  相似文献   

14.
QDs (Semiconductor QDs, CDs, SiQDs, and Pdots) are used in imaging microorganisms including viruses, bacteria, and fungi.  相似文献   

15.
Pyrazinamide(PZA), isoniazid(INH) and rifampicin(RFP) are all commonly used anti-tuberculosis drugs in clinical practice, and long-term medication may cause severe liver damage and toxicity. The level of peroxynitrite(ONOO–) generated in liver has long been regarded as a biomarker for the prediction and measurement of drug-induced liver injury(DILI). In this article, we constructed a BODIPY-based fluorescent probe(BDP-Py+) that enabled quickly and sensitively detect and image ONOO–in vivo. Utili...  相似文献   

16.
A novel method for the determination of peroxynitrite using folic acid as a fluorescent probe is described. The method is based on the oxidation of the reduced, low-fluorescent folic acid by peroxynitrite to produce a high-fluorescent emission product. The fluorescence increase is linearly related to the concentration of peroxynitrite in the range of 3 × 10−8 to 5.0 × 10−6 mol L−1 with a correlation coefficient of 0.998, and the detection limit is 1 × 10−8 mol L−1. Interferences from some metal ions normally seen in biological samples, and also some anions structurally similar to peroxynitrite were studied. The optimal conditions for the detection of peroxynitrite were evaluated.  相似文献   

17.
《中国化学快报》2022,33(7):3361-3370
Radionuclide imaging is now the premier imaging method in clinical practice for its high sensitivity and tomographic capability. Current clinically available radio imaging methods mostly use positron-emission tomography (PET) and single-photon emission computed tomography (SPECT) to detect anatomic abnormalities that conventional imaging techniques typically have challenges for visualizing. Contrast agents are indispensable for radionuclide imaging, and the radionuclide is always attached to a suitable vector that achieves targeted delivery. Nowadays, peptides have attracted increasing interest in targeting vectors of contrast agents, mainly due to their high specificity for target receptors at nanomolar concentrations and low toxicity. Radiolabeled peptide probes as kinds of PET/SPECT tracers had become essential tools for clinical radionuclide diagnosis. This review mainly summarizes radiolabeled peptide probes for bioimaging, including fundamental concepts of radiolabeled peptide probe design, some typical peptide analogs radiocontrast agents for PET, SPECT, and the combination imaging.  相似文献   

18.
Idiosyncratic drug toxicity (IDT), considered as a toxic host-dependent event, with an apparent lack of dose response relationship, is usually not predictable from early phases of clinical trials, representing a particularly confounding complication in drug development. Albeit a rare event (usually <1/5000), IDT is often life threatening and is one of the major reasons new drugs never reach the market or are withdrawn post marketing. Computational methodologies, like the computer-based approach proposed in the present study, can play an important role in addressing IDT in early drug discovery. We report for the first time a systematic evaluation of classification models to predict idiosyncratic hepatotoxicity based on linear discriminant analysis (LDA), artificial neural networks (ANN), and machine learning algorithms (OneR) in conjunction with a 3D molecular structure representation and feature selection methods. These modeling techniques (LDA, feature selection to prevent over-fitting and multicollinearity, ANN to capture nonlinear relationships in the data, as well as the simple OneR classifier) were found to produce QSTR models with satisfactory internal cross-validation statistics and predictivity on an external subset of chemicals. More specifically, the models reached values of accuracy/sensitivity/specificity over 84%/78%/90%, respectively in the training series along with predictivity values ranging from ca. 78 to 86% of correctly classified drugs. An LDA-based desirability analysis was carried out in order to select the levels of the predictor variables needed to trigger the more desirable drug, i.e. the drug with lower potential for idiosyncratic hepatotoxicity. Finally, two external test sets were used to evaluate the ability of the models in discriminating toxic from nontoxic structurally and pharmacologically related drugs and the ability of the best model (LDA) in detecting potential idiosyncratic hepatotoxic drugs, respectively. The computational approach proposed here can be considered as a useful tool in early IDT prognosis.  相似文献   

19.
Peroxynitrite (PON for short) is a powerful nitrating, nitrosating and oxidative agent for cellular constituents. In vivo, PON is formed through the diffusion-controlled reaction between superoxide radical (O2 ?- ) and nitric oxide (?NO). This critical review (with 67 refs.) covers the state of the art in nanomaterial-based (a) detection and imaging of PON inside cells and (b) monitoring of cellular events such as cellular oxidative burst by using optical or electrochemical methods. It starts with the formation, fate and pathophysiology of PON in vivo. The next part summarizes nanomaterial based electrochemical microsensors featuring nanofilms and nanostructured electrodes, nanospheres, 3D nanostructures and graphene-supported catalysts. A following chapter covers techniques based on optical nanoprobes, starting with nanomaterials used in optical detection of PON (including quantum dots, carbon dots, fluorescent organic polymer dots, rare earth nanocrystals including upconversion nanoparticles, iron oxide nanoparticles, gold nanoparticles, and fluorophore-modified nanoporous silicon). This is followed by subsections on strategies for optical detection of PON (including color changes, fluorescence quenching, activation and recovery), and on schemes for optimized spatial and temporal resolution, for improving sensitivity, selectivity, and (photo)stability. We then address critical issues related to biocompatibility, pharmacokinetics, give a number of representative practical applications and discuss challenges related to PON detection. The review concludes with a discussion of latest developments and future perspectives.
Graphical abstract ?
  相似文献   

20.
Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging   总被引:3,自引:0,他引:3  
Xu H  Aylott JW  Kopelman R 《The Analyst》2002,127(11):1471-1477
Polyacrylamide-based, ratiometric, spherical, optical nanosensors, or polyacrylamide PEBBLEs (Probes Encapsulated By Biologically Localized Embedding), have been fabricated, aimed at real-time glucose imaging in intact biological systems, i.e. living cells. These nanosensors are prepared using a microemulsion polymerization process, and their average size is about 45 nm in diameter. The sensors incorporate glucose oxidase (GOx), an oxygen sensitive fluorescent indicator (Ru[dpp(SO3Na)2]3)Cl2, and an oxygen insensitive fluorescent dye, Oregon Green 488-dextran or Texas Red-dextran, as a reference for the purpose of ratiometric intensity measurements. The enzymatic oxidation of glucose to gluconic acid results in the local depletion of oxygen, which is measured by the oxygen sensitive ruthenium dye. The small size and inert matrix of these sensors allows them to be inserted into living cells with minimal physical and chemical perturbations to their biological functions. The PEBBLE matrix protects the enzyme and fluorescent dyes from interference by proteins in cells, enabling reliable in vivo chemical analysis. Conversely, the matrix also significantly reduces the toxicity of the indicator and reference dyes to the cells, so that a larger variety of dyes can be used in optimal fashion. Furthermore, the PEBBLE matrix enables the synergistic approach in which there is a steady state of local oxygen consumption, and this cannot be achieved by separately introducing free enzyme and dyes into a cell. The work presented here describes the production and characterization of glucose sensitive PEBBLEs, and their potential for intracellular glucose measurements. The sensor response is determined in terms of the linear range, ratiometric operation, response time, sensor stability, reversibility and immunity to interferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号