首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The title compound, C7H5N3O2, is an inhibitor of nitric oxide synthase and mono­amine oxidase. The N1H tautomer crystallized as a dimer and adopts a planar conformation assisted by intramolecular hydrogen bonding.  相似文献   

2.
The solid‐state structure of the title compound, alternatively called 2‐amino­anilinium hydrogen phosphonate, C6H9N2+·H2PO3?, shows the monoprotonated di­amine mol­ecule to be multiply hydrogen bonded to HPO3H? anions. There is no inter‐phosphite hydrogen bonding, contrary to previous solid‐state observations of the species.  相似文献   

3.
Molecules of the title compound (alternative name: p‐nitro­benz­aldehyde phenyl­hydrazone), C13H11N3O2, adopt an E configuration about the azomethine C=N double bond. Molecules are approximately planar and the dihedral angle between the planes of the phenyl rings is 11.62 (9)°. Hydro­gen bonding links mol­ecules related by 42 screw axes to form helices with a pitch of 7.7186 (8) Å.  相似文献   

4.
Dapsone, formerly used to treat leprosy, now has wider therapeutic applications. As is the case for many therapeutic agents, low aqueous solubility and high toxicity are the main problems associated with its use. Derivatization of its amino groups has been widely explored but shows no significant therapeutic improvements. Cocrystals have been prepared to understand not only its structural properties, but also its solubility and dissolution rate. Few salts of dapsone have been described. The title salts, C12H13N2O2S+·C6H5O3S·H2O and C12H13N2O2S+·CH3SO3·H2O, crystallize as hydrates and both compounds exhibit the same space group (monoclinic, P21/n). The asymmetric unit of each salt consists of a 4‐[(4‐aminophenyl)sulfonyl]anilinium monocation, the corresponding sulfonate anion and a water molecule. The cation, anion and water molecule form hydrogen‐bonded networks through N—H…O=S, N—H…Owater and Owater—H…O=S hydrogen bonds. For both salts, the water molecules interact with one sulfonate anion and two anilinium cations. The benzenesulfonate salt forms a two‐dimensional network, while the hydrogen bonding within the methanesulfonate salt results in a three‐dimensional network.  相似文献   

5.
In the crystal structure of the title compound, C3H3NO2S2, the four‐membered C2S2 ring is planar, as is the whole mol­ecule. The short intramolecular S?O distance of 2.687 (2) Å shows the five‐atom system to be conjugated. The mol­ecules pack as a two‐dimensional network in the (010) plane through short intermolecular S?O [2.900 (2) and 3.077 (2) Å] interactions.  相似文献   

6.
The title compound anilinium chloride–4‐bromo‐N‐phenyl­benzene­sulfonamide (1/1), C6H8N+·Cl·C12H10BrNO2S, displays a hydrogen‐bonded ladder motif with four independent N—H⋯Cl bonds in which both the NH group of the sulfonamide molecule and the NH3 group of the anilinium ion [N⋯Cl = 3.135 (3)–3.196 (2) Å and N—H⋯Cl = 151–167°] are involved. This hydrogen‐bonded chain contains two independent R42(8) rings and each chloride ion acts as an acceptor of four hydrogen bonds.  相似文献   

7.
The title compound, C8H8NO4+·Cl·H2O, is the chloro­hydrated form of 2‐amino­benzene‐1,4‐dicarboxylic acid, the basic crystal structure of which is still not known. Mol­ecules are linked by classical N—H⋯O, O—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds, mainly along the mol­ecular plane, into sheets built by unusual R64(26), R64(22) and R43(22) rings. The stacking between layers is stabilized by another N—H⋯Cl hydrogen bond and by π–π inter­actions between aromatic rings facing each other.  相似文献   

8.
In the title compounds, C6H8N3O2+·NO3? and C5­H6­N3­O2+·­CH3SO3?, respectively, the cations are almost planar; the twist of the nitr­amino group about the C—N and N—N bonds does not exceed 10°. The deviations from coplanarity are accounted for by intermolecular N—H?O interactions. The coplanarity of the NHNO2 group and the phenyl ring leads to the deformation of the nitr­amino group. The C—N—N angle and one C—C—N angle at the junction of the phenyl ring and the nitr­amino group are increased from 120° by ca 6°, whereas the other junction C—C—N angle is decreased by ca 5°. Within the nitro group, the O—N—O angle is increased by ca 5° and one O—N—N angle is decreased by ca 5°, whereas the other O—N—N angle remains almost unchanged. The cations are connected to the anions by relatively strong N—H?O hydrogen bonds [shortest H?O separations 1.77 (2)–1.81 (3) Å] and much weaker C—H?O hydrogen bonds [H?O separations 2.30 (2)–2.63 (3) Å].  相似文献   

9.
The title compound, C23H16N4O4, can be considered as consisting of two connected fragments: a nitro­phenyl­hydrazone moiety, which assumes an E configuration, and an isoxazole moiety. In this latter fragment, the weak π‐electron delocalization shortens the carbonyl–isoxazole O?O distance [2.643 (2) Å] to less than the van der Waals radii sum.  相似文献   

10.
Achiral p‐nitro­phenyl isocyanide, C7H4N2O2, crystallizes in the orthorhombic chiral space group P212121. Attractive intermolecular interactions between the nitro O atoms and both aromatic H and nitro N atoms of neighbouring mol­ecules are observed. The O⋯N interaction is surprisingly strong [N⋯O = 2.869 (2) Å] compared with other aromatic nitro compounds.  相似文献   

11.
The title compound, C12H12N2O5, is a potential antiamnesic agent. The pyrrolidinone ring has an envelope conformation, and the central moiety is almost coplanar with the planes of the phenyl and pyrrolidinone rings. In the crystal structure, weak intermolecular C—H...O interactions link the mol­ecules into a complex network that can be described by (X) rings (X = 16, 20 and 26) and a C(12) chain.  相似文献   

12.
In the title compound, C9H18NO+·NO3, the piperidinium ring adopts a slightly deformed chair conformation and the nitrate anion is disordered. The ions are arranged in hydrogen‐bonded chains parallel to [001], in which the cations alternate with the anions. The intra­chain hydrogen bonds are bifurcated and link the O atoms of the anions to the N atoms of the cations.  相似文献   

13.
The contributions of the amino and imino resonance forms to the ground‐state structures of 2‐amino‐4‐methylpyridinium nitrate, C6H9N2+·NO3, and the previously reported 2‐amino‐5‐methylpyridinium nitrate [Yan, Fan, Bi, Zuo & Zhang (2012). Acta Cryst. E 68 , o2084], were studied using a combination of IR spectroscopy, X‐ray crystallography and density functional theory (DFT). The results show that the structures of 2‐amino‐4‐methylpyridine and 2‐amino‐5‐methylpyridine obtained upon protonation are best described as existing largely in the imino resonance forms.  相似文献   

14.
The title compound, 2C7H8NO2+·SO42?·H2O, (I), exhibits a complex three‐dimensional network of hydrogen bonds, involving all hydrogen donor atoms. A total of ten hydrogen bonds are present in the asymmetric unit, five of which are three‐centre hydrogen bonds with one hydrogen donor and two acceptors. The suitability of the compound for possiblecharge–density study was investigated. As the quality of crystals did not seem sufficient for this purpose, no further experiments were carried out.  相似文献   

15.
In the title compound, C8H12N+·C8HN4O2, the anion and cation lie on a crystallographic mirror plane and form planar ribbons via N—H⋯O [N⋯O = 2.933 (4) Å, H⋯O = 2.01 Å and N—H⋯O = 170°] and N—H⋯N [N⋯N = 3.016 (5) Å, H⋯N = 2.15 Å and N—H⋯N = 169°] hydrogen bonds. The ribbons are further linked via weak C—H⋯O and C—H⋯N hydrogen bonds. In adjacent planes, anions lie opposite cations; π–π interactions (separation a/2 = 3.520 Å) exist between the anions and the cations, and stacks are formed, running along the a axis. The cations are disordered over two interpenetrating sites, with occupancies of 0.833 (5) and 0.167 (5).  相似文献   

16.
The title compound, C9H13N4O3+·NO3, is the first structurally characterized Schiff base derived from semicarbazide and pyridoxal. Unusually for an unsubstituted semicarbazone, the compound adopts a syn conformation, in which the carbonyl O atom is in a cis disposition relative to the azomethine N atom. This arrangement is supported by a pair of hydrogen bonds between the organic cation and the nitrate anion. The cation is essentially planar, with only a hydroxymethyl O atom deviating significantly from the mean plane of the remaining atoms (r.m.s. deviation of the remaining non‐H atoms = 0.01 Å). The molecules are linked into flat layers by N—H...O and C—H...O hydrogen bonds. O—H...O hydrogen bonds involving the hydroxymethyl group as a donor interconnect the layers into a three‐dimensional structure.  相似文献   

17.
The title compounds, C8H10O2, (I), and C12H14O2, (II), occurred as by‐products in the controlled synthesis of a series of bis­(gem‐alkynols), prepared as part of an extensive study of synthon formation in simple gem‐alkynol derivatives. The two 4‐(gem‐alkynol)‐1‐ones crystallize in space group P21/c, (I) with Z′ = 1 and (II) with Z′ = 2. Both structures are dominated by O—H?O=C hydrogen bonds, which form simple chains in the cyclo­hexane derivative, (I), and centrosymmetric dimers, of both symmetry‐independent mol­ecules, in the cyclo­hexa‐2,5‐diene, (II). These strong synthons are further stabilized by C[triple‐bond]C—H?O=C, Cmethylene—H?O(H) and Cmethyl—H?O(H) interactions. The direct intermolecular interactions between donors and acceptors in the gem‐alkynol group, which characterize the bis­(gem‐alkynol) analogues of (I) and (II), are not present in the ketone derivatives studied here.  相似文献   

18.
Three polymorphs of 4,4′‐diiodobenzalazine (systematic name: 4‐iodobenzaldehyde azine), C14H10I2N2, have crystallographically imposed inversion symmetry. 4‐Chloro‐4′‐iodobenzalazine [systematic name: 1‐(4‐chlorobenzylidene)‐2‐(4‐iodobenzylidene)diazane], C14H10ClIN2, has a partially disordered pseudocentrosymmetric packing and is not isostructural with any of the polymorphs of 4,4′‐diiodobenzalazine. All structures pack utilizing halogen–halogen interactions; some also have weak π (benzene ring) interactions. A comparison with previously published methylphenylketalazines (which differ by substitution of methyl for H at the azine C atoms) shows a fundamentally different geometry for these two classes, namely planar for the alazines and twisted for the ketalazines. Density functional theory calculations confirm that the difference is fundamental and not an artifact of packing forces.  相似文献   

19.
The title compounds, C18H21NO and C18H21NS, in their enantiomerically pure forms are isostructural with the enantiomerically pure 4‐(4‐hydroxyphenyl)‐2,2,4‐trimethylchroman and 4‐(2,4‐dihydroxyphenyl)‐2,2,4‐trimethylchroman analogues and form extended linear chains via N—H...O or N—H...S hydrogen bonding along the [100] direction. The absolute configuration for both compounds was determined by anomalous dispersion methods with reference to both the Flack parameter and, for the light‐atom compound, Bayesian statistics on Bijvoet differences.  相似文献   

20.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号