首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The First Vanadium(III) Borophosphate: Synthesis and Crystal Structure of CsV3(H2O)2[B2P4O16(OH)4] CsV3(H2O)2[B2P4O16(OH)4] was prepared under mild hydrothermal conditions (T = 165 °C) from mixtures of CsOH(aq), VCl3, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure was determined by X‐ray single crystal methods (monoclinic; space group C2/m, No. 12): a = 958.82(15) pm, b = 1840.8(4) pm, c = 503.49(3) pm; β = 110.675(4)°; Z = 2. The anionic partial structure contains oligomeric units [BP2O8(OH)2]5–, which are built up by a central BO2(OH)2 tetrahedron and two PO4 tetrahedra sharing common corners. VIII is octahedrally coordinated by oxygen of adjacent phosphate tetrahedra and OH groups of borate tetrahedra as well as oxygen of phosphate tetrahedra and H2O molecules, respectively (coordination octahedra VO4(OH)2 and VO4(H2O)2). The oxidation state +3 for vanadium was confirmed by measurements of the magnetic susceptibility. The trimeric borophosphate groups are connected via vanadium centres to form layers with octahedra‐tetrahedra ring systems, which are likewise linked via VIII‐coordination octahedra. Overall, a three‐dimensional framework constructed from VO4(OH)2 and VO4(H2O)2 octahedra as well as BO2(OH)2 and PO4 tetrahedra results. The structure contains channels running along [001], which are occupied by Cs+ in a distorted octahedral coordination (CsO4(H2O)2).  相似文献   

2.
The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene‐1,4‐dicarboxylic acid (H2bdc) and 1,10‐phenanthroline‐5,6‐dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2 fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3‐OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2− ligands are fully deprotonated and adopt μ3‐κOO′:κO′′ and μ4‐κOO′:κO′′:κO′′′ coordination modes, bridging three or four ZnII cations, respectively, from two Zn4(OH)2 units. The Zn4(OH)2 fragment connects six neighbouring tetranuclear units through four μ3‐bdc2− and two μ4‐bdc2− ligands, forming a three‐dimensional framework with uninodal 6‐connected α‐Po topology, in which the tetranuclear Zn4(OH)2 units are considered as 6‐connected nodes and the bdc2− ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2 unit and are connected to it through hydrogen‐bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4‐bdc2− ligands.  相似文献   

3.
The title compound, C2H7N4O+·CH4O3P·H2O, crystallized with one carbamoyl­guanidinium cation, one methyl­phos­phonate anion and one water mol­ecule in the asymmetric unit. All H atoms of the carbamoyl­guanidinium ion are involved in a hydrogen‐bonded network. The CH3PO2(OH) anions, together with the water mol­ecules, build O—H⋯O hydrogen‐bonded ribbons around a 21 screw axis parallel to the b axis. Neighbouring ribbons are not directly connected via hydrogen bonding. The carbamoyl­guanidinium cations are linked to these ribbons by N—H⋯O bridges and build a slightly buckled layer structure, the interlayer distance being b/2.  相似文献   

4.
A novel borophosphate‐hydrate, (Ni3–xMgx)[B3P3O12(OH)6] · 6 H2O (x ≈ 1.5), has been prepared by hydrothermal synthesis (T = 170 °C) from a mixture of NiCl2 · 6 H2O, Mg(OH)2, B2O3 and H3PO4. The crystal structure was determined at 293 K from single‐crystal X‐ray diffraction data (trigonal, R3c (no. 167), a = 14.957(10) Å, c = 13.812(6) Å, V = 2676(2) Å3, Z = 6, R1 = 0.0276, wR2 = 0.0714 for 779 observed reflections with I > 2σ(I)). The crystal structure contains unbranched six‐membered rings [B3P3O12(OH)6]6– of alternating corner linked borate and phosphate tetrahedra, which are stacked along [001] and connected via MIIO2(OH)2(H2O)2 coordination polyhedra. Hydrogen bonding between the tetrahedral six‐membered rings and MIIO2(OH)2(H2O)2 octahedra leads to a further cross‐linking. With respect to the arrangement of isolated six‐membered tetrahedral rings the crystal structure of this borophosphate‐hydrate is closely related to the cyclo‐hexasilicate dioptase, Cu6[Si6O18] · 6 H2O.  相似文献   

5.
The title bimetallic compound, [Yb43‐OH)4(C6H13NO2)7(H2O)7][ZnCl4][ZnCl3(OH)]Cl4·8H2O, was synthesized at near physiological pH (6.0). The compound exhibits some novel structural features, including an asymmetric [Yb43‐OH)4(l ‐leucine)7(H2O)7]8+ complex cation in which four OH groups act as bridging ligands, linking four Yb3+ cations into a Yb4O4 structural unit. Each pair of adjacent Yb3+ ions is further bridged by one carboxy group from a leucine ligand. Water mol­ecules and a monodentate leucine ligand also coordinate to Yb3+ ions, completing their eight‐coordinate square‐antiprismatic coordination. The Yb43‐OH)4(l ‐leu­cine)7(H2O)7]8+ cation, the [ZnCl4]2−, [ZnCl3OH]2− and Cl anions, and the lattice water mol­ecules are linked via hydrogen bonds.  相似文献   

6.
Coordination polymers (CPs) have been widely studied because of their diverse and adjustable topologies and wide‐ranging applications in luminescence, chemical sensors, magnetism, photocatalysis, gas adsorption and separation. In the present work, two coordination polymers, namely poly[(μ5‐benzene‐1,3,5‐tricarboxylato‐κ6O1:O1′:O3:O3:O5,O5′){μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}di‐μ3‐hydroxido‐dicobalt(II)], [Co2(C9H3O6)(OH)(C12H12N6)]n or [Co2(btc)(OH)(mtrb)]n, (1), and poly[[diaquabis(μ3‐benzene‐1,3,5‐tricarboxylato‐κ3O1:O3:O5)bis{μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}tetra‐μ3‐hydroxido‐tetracopper(II)] monohydrate], {[Cu4(C9H3O6)2(OH)2(C12H12N6)2(H2O)2]·H2O}n or {[Cu4(btc)2(OH)2(mtrb)2(H2O)2]·H2O}n, (2), were synthesized by the hydrothermal method using 1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene (mtrb) and benzene‐1,3,5‐tricarboxylate (btc3?). CP (1) exhibits a (3,8)‐coordinated three‐dimensional (3D) network of the 3,8T38 topological type, with a point symbol of {4,5,6}2{42·56·616·72·82}, based on the tetranuclear hydroxide cobalt(II) cluster [Co43‐OH)2]. CP (2) shows a (3,8)‐coordinated tfz‐d topology, with a point symbol of {43}2{46·618·84}, based on the tetranuclear hydroxide copper(II) cluster [Cu43‐OH)2]. The different (3,8)‐coordinated 3D networks based on tetranuclear hydroxide–metal clusters of (1) and (2) are controlled by the different central metal ions [CoII for (1) and CuII for (2)]. The thermal stabilities and solid‐state optical diffuse‐reflection spectra were measured. The energy band gaps (Eg) obtained for (1) and (2) were 2.72 and 2.29 eV, respectively. CPs (1) and (2) exhibit good photocatalytic degradation of the organic dyes methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation.  相似文献   

7.
The reactions of K[(2,6‐iPr2C6H3‐O)2POO] either with LaCl3(H2O)7 or with Nd(NO3)3(H2O)6 in a 3:1 molar ratio, followed by vacuum drying and recrystallization from alkanes, have led to the formation of diaquapentakis[bis(2,6‐diisopropylphenyl) phosphato]‐μ‐hydroxido‐dilanthanum hexane disolvate, [La2(C24H34O4P)5(OH)(H2O)2]·2C6H14, ( 1 )·2(hexane), and tetraaquatetrakis[bis(2,6‐diisopropylphenyl) phosphato]‐μ‐hydroxido‐dineodymium bis(2,6‐diisopropylphenyl) phosphate heptane disolvate, [Nd2(C24H34O4P)4(OH)(H2O)4]·2C6H14, ( 2 )·2(heptane). The compounds crystalize in the P21/n and P space groups, respectively. The diaryl‐substituted organophosphate ligand exhibits three different coordination modes, viz. κ2O,O′‐terminal [in ( 1 ) and ( 2 )], κO‐terminal [in ( 1 )] and μ2‐κ1O1O′‐bridging [in ( 1 ) and ( 2 )]. Binuclear structures ( 1 ) and ( 2 ) are similar and have the same unique Ln2(μ‐OH)(μ‐OPO)2 core. The structure of ( 2 ) consists of an [Nd2{(2,6‐iPr2C6H3‐O)2POO}4(OH)(H2O)4]+ cation and a [(2,6‐iPr2C6H3‐O)2POO] anion, which are bound via four intermolecular O—H…O hydrogen bonds. The molecular structure of ( 1 ) displays two O—H…O hydrogen bonds between OH/H2O ligands and a κ1O‐terminal organophosphate ligand, which resembles, to some extent, the `free' [(2,6‐iPr2C6H3‐O)2POO] anion in ( 2 ). NMR studies have shown that the formation of ( 1 ) undoubtedly occurs due to intramolecular hydrolysis during vacuum drying of the aqueous La tris(phosphate) complex. Catalytic experiments have demonstrated that the presence of the coordinated hydroxide anion and water molecules in precatalyst ( 2 ) substantially lowered the catalytic activity of the system prepared from ( 2 ) in butadiene and isoprene polymerization compared to the catalytic system based on the neodymium tris[bis(2,6‐diisopropylphenyl) phosphate] complex, which contains neither OH nor H2O ligands.  相似文献   

8.
A new iron(III)/vanadium(III) phosphate, K3[Fe3.26V0.74(OH)O(PO4)4(H2O)2]·2H2O (1), has been obtained by hydrothermal synthesis and characterized by single crystal X-ray diffraction, Scanning electron microscopy–energy dispersive X-ray spectroscopy, Inductively coupled plasma atomic emission spectroscopy (ICP), thermogravimetric analysis, and FTIR spectroscopy. Single crystal X-ray diffraction reveals a 3D open framework (monoclinic, space group P21/n, a?=?9.6391(7)?Å, b?=?9.8063(7)?Å, c?=?9.7268(7)?Å, β?=?100.71(1)°, and V?=?903.38(11)?Å3). This structure presents FeIII and VIII in a 4.4?:?1?M ratio with the metal ions in two different crystallographic sites. Both metallic centers have distorted octahedral environments, linked by PO4 tetrahedra, forming channels along the a-axis. The asymmetric unit of K3[Fe3.26V0.74(OH)O(PO4)4(H2O)2]·2H2O presents a {M4(OH)O(PO4)4(H2O)2}3? anionic entity, charge balanced by three K+, which are located within the channels. It is also possible to distinguish M4O2 units whose MIII polyhedra are linked by vertex and edges.  相似文献   

9.
This paper reports the hydrothermal synthesis and crystal structure refinement of diiron(II) phosphate hydroxide, FeII2(PO4)(OH), obtained at 1063 K and 2.5 GPa. This phosphate is the synthetic analogue of the mineral wolfeite, and has a crystal structure topologically identical to those of minerals of the triplite–triploidite group. The complex framework contains edge‐ and corner‐sharing FeO4(OH) and FeO4(OH)2 polyhedra, linked via corner‐sharing to the PO4 tetrahedra (average P—O distances are between 1.537 and 1.544 Å). Four five‐coordinated Fe sites are at the centers of distorted trigonal bipyramids (average Fe—O distances are between 2.070 and 2.105 Å), whereas the coordination environments of the remaining Fe sites are distorted octahedra (average Fe—O distances are between 2.146 and 2.180 Å). The Fe—O distances are similar to those observed in natural Mg‐rich wolfeite, except for two Fe—O bond distances, which are significantly longer in synthetic Fe2+2(PO4)(OH).  相似文献   

10.
The crystal structures of three unusual chromium organophosphate complexes have been determined, namely, bis(μ‐butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κOO′)di‐μ‐hydroxido‐bis[(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κO)(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl phosphato‐κO)chromium](CrCr) heptane disolvate or {Cr22‐OH)22‐PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κOO′]2[PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2[HOPO(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2}·2C7H16, [Cr2(C19H32O4P)4(C19H33O4P)2(OH)2]·2C7H16, denoted ( 1 )·2(heptane), [μ‐bis(2,6‐diisopropylphenyl) phosphato‐1κO:2κO′]bis[bis(2,6‐diisopropylphenyl) phosphato]‐1κO,2κO‐chlorido‐2κCl‐triethanol‐1κ2O,2κO‐di‐μ‐ethanolato‐1κ2O:2κ2O‐dichromium(CrCr) ethanol monosolvate or {Cr22‐OEt)22‐PO2(O‐2,6‐iPr2‐C6H3)2‐κOO′][PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl(EtOH)3}·EtOH, [Cr2(C2H5O)2(C24H34O4P)3Cl(C2H6O)3]·C2H6O, denoted ( 2 )·EtOH, and di‐μ‐ethanolato‐1κ2O:2κ2O‐bis{[bis(2,6‐diisopropylphenyl) hydrogen phosphato‐κO][bis(2,6‐diisopropylphenyl) phosphato‐κO]chlorido(ethanol‐κO)chromium}(CrCr) benzene disolvate or {Cr22‐OEt)2[PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2[HOPO(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl2(EtOH)2}·2C6H6, [Cr2(C2H5O)2(C24H34O4P)2(C24H35O4P)2Cl2(C2H6O)2]·2C6H6, denoted ( 3 )·2C6H6. Complexes ( 1 )–( 3 ) have been synthesized by an exchange reaction between the in‐situ‐generated corresponding lithium or potassium disubstituted phosphates with CrCl3(H2O)6 in ethanol. The subsequent crystallization of ( 1 ) from heptane, ( 2 ) from ethanol and ( 3 ) from an ethanol/benzene mixture allowed us to obtain crystals of ( 1 )·2(heptane), ( 2 )·EtOH and ( 3 )·2C6H6, whose structures have the monoclinic P21, orthorhombic P212121 and triclinic P space groups, respectively. All three complexes have binuclear cores with a single Cr—Cr bond, i.e. Cr2O6P2 in ( 1 ), Cr2PO4 in ( 2 ) and Cr2O2 in ( 3 ), where the Cr atoms are in distorted octahedral environments, formally having 16 ē per Cr atom. The complexes have bridging ligands μ2‐OH in ( 1 ) or μ2‐OEt in ( 2 ) and ( 3 ). The organophosphate ligands demonstrate terminal κO coordination modes in ( 1 )–( 3 ) and bridging μ2‐κOO′ coordination modes in ( 1 ) and ( 2 ). All the complexes exhibit hydrogen bonding: two intramolecular Ophos…H—Ophos interactions in ( 1 ) and ( 3 ) form two {H[PO2(OR)2]2} associates; two intramolecular Cl…H—OEt hydrogen bonds additionally stabilize the Cr2O2 core in ( 3 ); two intramolecular Ophos…H—OEt interactions and two O…H—O intermolecular hydrogen bonds with a noncoordinating ethanol molecule are observed in ( 2 )·EtOH. The presence of both basic ligands (OH? or OEt?) and acidic [H(phosphate)2]? associates at the same metal centres in ( 1 ) and ( 3 ) is rather unusual. Complexes may serve as precatalysts for ethylene polymerization under mild conditions, providing polyethylene with a small amount of short‐chain branching. The formation of a small amount of α‐olefins has been detected in this reaction.  相似文献   

11.
In the search for photocatalysts that can directly utilize near‐IR (NIR) light, we investigated three oxides Cu3(OH)4SO4 (antlerite), Cu4(OH)6SO4, and Cu2(OH)3Cl by photodecomposing 2,4‐dichlorophenol over them under NIR irradiation and by comparing their electronic structures with that of the known NIR photocatalyst Cu2(OH)PO4. Both Cu3(OH)4SO4 and Cu4(OH)6SO4 are NIR photocatalysts, but Cu2(OH)3Cl is not. Thus, in addition to the presence of two different CuOm and Cu′On polyhedra linked with Cu?O?Cu′ bridges, the presence of acceptor groups (e.g., SO4, PO4) linked to the metal oxygen polyhedra is necessary for NIR photocatalysts.  相似文献   

12.
2‐Amino‐3‐hydroxypyridinium dioxido(pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino‐3‐OH‐py)][VO2(dipic)], (I), was prepared by the reaction of VCl3 with dipicolinic acid (dipicH2) and 2‐amino‐3‐hydroxypyridine (amino‐3‐OH‐py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X‐ray structure analysis, and consists of an anionic [VO2(dipic)] complex and an H(amino‐3‐OH‐py)+ counter‐cation. The VV ion is five‐coordinated by one O,N,O′‐tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X‐ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.  相似文献   

13.
Reactions of CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] with Mn‐containing starting materials result in seven novel polynuclear Ce or Ce/Mn complexes with pivalato (tBuCO ) and, in most cases, auxiliary N,O‐ or N,O,O‐donor ligands. With nuclearities ranging from 6–14, the compounds present aesthetically pleasing structures. Complexes [CeIV6(μ3‐O)4(μ3‐OH)4(μ‐O2CtBu)12] ( 1 ), [CeIV6MnIII4(μ4‐O)4(μ3‐O)4(O2CtBu)12(ea)4(OAc)4]?4 H2O?4 MeCN (ea?=2‐aminoethanolato; 2 ), [CeIV6MnIII8(μ4‐O)4(μ3‐O)8(pye)4(O2CtBu)18]2[CeIV6(μ3‐O)4(μ3‐OH)4(O2CtBu)10(NO3)4] [CeIII(NO3)5(H2O)]?21 MeCN (pye?=pyridine‐2‐ethanolato; 3 ), and [CeIV6CeIII2MnIII2(μ4‐O)4(μ3‐O)4(tbdea)2(O2CtBu)12(NO3)2(OAc)2]?4 CH2Cl2 (tbdea2?=2,2′‐(tert‐butylimino]bis[ethanolato]; 4 ) all contain structures based on an octahedral {CeIV6(μ3‐O)8} core, in which many of the O‐atoms are either protonated to give (μ3‐OH)? hydroxo ligands or coordinate to further metal centers (MnIII or CeIII) to give interstitial (μ4‐O)2? oxo bridges. The decanuclear complex [CeIV8CeIIIMnIII(μ4‐O)3(μ3‐O)3(μ3‐OH)2(μ‐OH)(bdea)4(O2CtBu)9.5(NO3)3.5(OAc)2]?1.5 MeCN (bdea2?=2,2′‐(butylimino]bis[ethanolato]; 5 ) contains a rather compact CeIV7 core with the CeIII and MnIII centers well‐separated from each other on the periphery. The aggregate in [CeIV4MnIV2(μ3‐O)4(bdea)2(O2CtBu)10(NO3)2]?4 MeCN ( 6 ) is based on a quasi‐planar {MnIV2CeIV4(μ3‐O)4} core made up of four edge‐sharing {MnIVCeIV2(μ3‐O)} or {CeIV3(μ3‐O)} triangles. The structure of [CeIV3MnIV4MnIII(μ4‐O)2(μ3‐O)7(O2CtBu)12(NO3)(furan)]?6 H2O ( 7 ?6 H2O) can be considered as {MnIV2CeIV2O4} and distorted {MnIV2MnIIICeIVO4} cubane units linked through a central (μ4‐O) bridge. The Ce6Mn8 equals the highest nuclearity yet reported for a heterometallic Ce/Mn aggregate. In contrast to most of the previously reported heterometallic Ce/Mn systems, which contain only CeIV and either MnIV or MnIII, some of the aggregates presented here show mixed valency, either MnIV/MnIII (see 7 ) or CeIV/CeIII (see 4 and 5 ). Interestingly, some of the compounds, including the heterovalent CeIV/CeIII 4 , could be obtained from either CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] as starting material.  相似文献   

14.
Ag6(VIVO)2(PO4)2(P2O7) was obtained by reaction of Ag3PO4 and (VO)2P2O7 (sealed ampoule, 550 °C, 3 d). The crystal structure of the new mixed ortho‐pyrophosphate was determined from X‐ray single‐crystal data [Pnma, Z = 4, a = 12.759(3) Å, b = 17.340(4) Å, c = 6.418(1) Å, R1 = 0.071, wR2 = 0.184 for 3174 unique reflections with Fo > 4σ(Fo), 141 variables]. Ag+ ions are located in between layers [(VIVO)2(PO4)2(P2O7)]6–. Equilibrium relations of the new phosphate to neighboring phases were determined. The electronic structure of the (VIV≡O)2+ group was investigated by polarized electronic absorption spectroscopy (ν̃1a = 9450 cm–1, ν̃1b = 9950 cm–1, ν̃2 = 14750 cm–1), EPR spectroscopy [X‐ and Q‐band, powder and single crystal, orthorhombic crystal g‐tensor with g1 = 1.9445(3), g2 = 1.9521(3), g3 = 1.9695(3)], and magnetic measurements (powder, μexp/μB = 1.71, Θp = –1.7 K).  相似文献   

15.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

16.
The new layered title compound, barium di‐μ‐hydroxido‐di‐μ‐vanadato‐tricobaltate(II), was prepared under low‐temperature hydrothermal conditions. Its crystal structure comprises Co2+ and O2− ions in the Kagomé geometry. The octahedral Co3O6(OH)2 Kagomé layers, made up of edge‐shared CoO4(OH)2 octahedra with Co on a site of 2/m symmetry, alternate along the c axis with barium vanadate heteropolyhedral layers, in which Ba is on a site of m symmetry and V is on a site of 3m symmetry. All three O atoms and the H atom also occupy special positions: two O atoms and the H atom are on sites with 3m symmetry and one O atom is on a site with m symmetry. Ba[Co3(VO4)2(OH)2] represents the first compound from the four‐component BaO–CoO–V2O5–H2O system and its structure is topologically related to the minerals vesignieite, Ba[Cu3(VO4)2(OH)2], and bayldonite, Pb[Cu3(AsO4)2(OH)2].  相似文献   

17.
The crystal structure of the title complex, {[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)}n, is built of infinite polymeric cationic {[Cu3(C2H3O2)2(H2O)4(OH)2]2+}n chains stretching along the a axis, with naphthalene‐1,5‐disulfonate (1,5‐nds) anions in between. One independent CuII cation and the 1,5‐nds anion occupy special positions on crystallographic inversion centres. Each CuII cation has an octa­hedral coordination environment formed by two carboxyl O atoms, two hydroxo O atoms and two water mol­ecules. The carboxyl­ate and hydroxo groups perform a bridging function, linking adjacent Cu atoms in the chain, with a shortest Cu⋯Cu distance of 2.990 (3) Å. The chains are further linked into a three‐dimensional supra­molecular framework via hydrogen‐bonding inter­actions involving the sulfonate groups of the 1,5‐­nds dianions.  相似文献   

18.
Crystals of mononuclear tris[bis(2,6‐diisopropylphenyl) phosphato‐κO]pentakis(methanol‐κO)lanthanide methanol monosolvates of lanthanum, [La(C24H34O4P)3(CH3OH)5]·CH3OH, ( 1 ), cerium, [Ce(C24H34O4P)3(CH3OH)5]·CH3OH, ( 2 ), and neodymium, [Nd(C24H34O4P)3(CH3OH)5]·CH3OH, ( 3 ), have been obtained by reactions between LnCl3(H2O)n (n = 6 or 7) and lithium bis(2,6‐diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds ( 1 )–( 3 ) crystallize in the monoclinic P21/c space group and have isomorphous crystal structures. All three bis(2,6‐diisopropylphenyl) phosphate ligands display a κO‐monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O2P(O‐2,6‐iPr2C6H3)2}3(CH3OH)5] molecular unit exhibits four intramolecular O—H…O hydrogen bonds, forming six‐membered rings. The unit forms two intermolecular O—H…O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O2P(O‐2,6‐iPr2C6H3)2}3(CH3OH)5]·CH3OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen‐bond network. Complexes ( 1 )–( 3 ) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound ( 2 ) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6‐diisopropylphenyl) phosphato‐κO]neodymium, ( 3′ ), which was obtained as a dry powder of ( 3 ) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.  相似文献   

19.
《Supramolecular Science》1998,5(3-4):297-302
Two imidazolium templated aluminophosphate layers [N2C3H5]2 [Al3P4O16H] (1) and [N2C3H5] [AlP2O8H2(OH2)2] (2) have been synthesized under solvothermal conditions at 160°C. The effects of P/Al ratio the amount of organic amine and the type of solvent on the products are investigated. Their structures are characterized by single-crystal X-ray diffraction (XRD) powder XRD 27Al DOR NMR 31P MAS NMR and thermal analyses. Both compounds exhibit unusual structure architectures which are different from previously reported [Al3P4O16]3- and [AlP2O8]3- families. Compound 1 crystallizes in the triclinic space group of P1̄ (No. 2) with a=8.940(2), b=9.360(2), c=11.721(2) Å, α=97.10(2), β=95.10(2), γ=91.91(2)°, V=968.4(3) Å3 and Z=2. The structure contains a new macroanionic inorganic sheet characterized by a series of double six-membered ring (D6R) in which Al moieties (including AlO4 and AlO5) and P moieties [including PO4, PO3(=O) and PO2(=O) (OH)] are corner-shared through oxgens in an alternative manner. Compound 2 crystallizes in the monoclinic space group of C2/c (No. 15) with a=21.854(4), b=7.188(2), c=6.990(2) Å, β=103.77(2)°, V=1063.5(5) Å3 and Z=4. The structure is based on a new two-dimensionally connected inorganic network containing eight-membered rings in which AlO4(OH2)2 and PO2(OH)(=O) units are connected alternatively.  相似文献   

20.
Rb2Co3(H2O)2[B4P6O24(OH)2]: A Borophosphate with ‐Tetrahedral Anionic Partial Structure and Trimers of Octahedra (Co O12(H2O)2) Rb2Co3(H2O)2[B4P6O24(OH)2] is formed under mild hydrothermal conditions (T = 165 °C) from mixtures of RbOH(aq), CoCl2, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure (orthorhombic system) was solved by X‐ray single crystal methods (space group Pbca, No. 61; R‐values (all data): R1 = 0.0699, wR2 = 0.0878): a = 950.1(1) pm, b = 1227.2(2) pm, c = 2007.4(2) pm; Z = 4. The anionic partial structure consists of tetrahedral [B4P6O24(OH)28–] layers, which contain three‐ and nine‐membered rings. CoII is octahedrally coordinated by oxygen and oxygen and H2O ligands, respectively (coordination octahedra CoO6 and CoO4(H2O)2). Three adjacent coordination octahedra are condensed via common edges to form trimeric units (CoO12(H2O)2). The oxidation state +2 of cobalt was confirmed by magnetic measurements. The octahedral trimers are quasi‐isolated. No long‐range magnetic ordering occurs down to 2 K. Rb+ is disordered over three crystallographically independent sites within channels of the structure running parallel [010]; the coordination sphere of Rb+ is formed by nine oxygen species of the tetrahedral layers, one OH group and one H2O molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号