首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy and endocytosis are essential in regulating cellular homeostasis and cancer immunotherapeutic responses. Existing methods for autophagy and endocytosis imaging are susceptible to cellular micro-environmental changes, and direct fluorogenic visualization of their fluxes remains challenging. We develop a novel strategy via clicking of organelle-enriched probes (COP), which comprises a pair of trans-cyclooctenol (TCO) and tetrazine probes separately enriched in lysosomes and mitochondria (in autophagy) or plasma membrane (in endocytosis). These paired probes are merged and boost a fluorogenic click reaction in response to autophagic or endocytic flux that ultimately fuses mitochondria or plasma membrane into lysosomes. We demonstrate that this strategy enables direct visualization of autophagic and endocytic fluxes, and confer insight into correlation of autophagic or endocytic flux to cell surface expression of immunotherapeutic targets such as MHC-I and PD-L1. The COP strategy provides a new paradigm for imaging autophagic and endocytic fluxes, and affords potential for improved cancer immunotherapy using autophagy or endocytosis inhibitors.

A new strategy is developed for direct fluorogenic imaging of autophagic and endocytic fluxes via clicking of organelle-enriched trans-cyclooctenol and tetrazine derived probes.  相似文献   

2.
Traditional fluorescent peptide chemical syntheses hinge on the use of limited fluorescent/dye-taggable unnatural amino acids and entail multiple costly purifications. Here we describe a facile and efficient protocol for in situ construction of dipyrrins on the N-terminus with 20 natural and five unnatural amino acids and the lysine''s side chain of selected peptides/peptide drugs through Fmoc-based solid-phase peptide synthesis. The new strategy enables the direct formation of boron–dipyrromethene (BODIPY)–peptide conjugates from simple aldehyde and pyrrole derivatives without pre-functionalization, and only requires a single-time chromatographic purification at the final stage. As a model study, synthesized EBNA1-targeting BODIPY1–Pep4 demonstrates intact selectivity in vitro, responsive fluorescence enhancement, and higher light cytotoxicity due to the photo-generation of cytotoxic singlet oxygen. This work offers a novel practical synthetic platform for fluorescent peptides for multifaceted biomedical applications.

Solid-phase fluorescent BODIPY–peptide synthesis via in situ dipyrrin construction offers an efficient fluorescent peptide synthetic platform for multifaceted biomedical applications.  相似文献   

3.
Protein–protein interactions (PPIs) are regarded as important, but undruggable targets. Intrinsically disordered p53 transactivation domain (p53TAD) mediates PPI with mouse double minute 2 (MDM2), which is an attractive anticancer target for therapeutic intervention. Here, using aerolysin nanopores, we probed the p53TAD peptide/MDM2 interaction and its modulation by small-molecule PPI inhibitors or p53TAD phosphorylation. Although the p53TAD peptide showed short-lived (<100 ms) translocation, the protein complex induced the characteristic extraordinarily long-lived (0.1 s ∼ tens of min) current blockage, indicating that the MDM2 recruitment by p53TAD peptide almost fully occludes the pore. Simultaneously, the protein complex formation substantially reduced the event frequency of short-lived peptide translocation. Notably, the addition of small-molecule PPI inhibitors, Nutlin-3 and AMG232, or Thr18 phosphorylation of p53TAD peptide, were able to diminish the extraordinarily long-lived events and restore the short-lived translocation of the peptide rescued from the complex. Taken together, our results elucidate a novel mechanism of single-molecule sensing for analyzing PPIs and their inhibitors using aerolysin nanopores. This novel methodology may contribute to remarkable improvements in drug discovery targeted against undruggable PPIs.

Using aerolysin nanopores, we probed protein–protein interaction (PPI) between p53TAD and MDM2 and its modulation by small-molecule PPI inhibitors and p53TAD phosphorylation.  相似文献   

4.
The first total synthesis of cytotoxic cyanobacterial peptide natural products biseokeaniamides A–C is reported employing a robust solid-phase approach to peptide backbone construction followed by coupling of a key thiazole building block. To rapidly access natural product analogues, we have optimized an operationally simple electrochemical oxidative decarboxylation–nucleophilic addition pathway which exploits the reactivity of native C-terminal peptide carboxylates and abrogates the need for building block syntheses. Electrochemically-generated N,O-acetal intermediates are engaged with electron-rich aromatics and organometallic reagents to forge modified amino acids and peptides. The value of this late-stage modification method is highlighted by the expedient and divergent production of bioactive peptide analogues, including compounds which exhibit enhanced cytotoxicity relative to the biseokeaniamide natural products.

A late-stage electrochemical decarboxylation enables rapid access to structural analogues of biseokeaniamides A–C, cytotoxic lipopeptide natural products.  相似文献   

5.
Three unsymmetrical diiodobichalcogenophenes SSeI2, STeI2, and SeTeI2 and a diiodoterchalcogenophene SSeTeI2 were prepared. Grignard metathesis of SSeI2, STeI2, SeTeI2, and SSeTeI2 occurred regioselectively at the lighter chalcogenophene site because of its relatively lower electron density and less steric bulk. Nickel-catalyzed Kumada catalyst-transfer polycondensation of these Mg species provided a new class of side-chain regioregular and main-chain AB-type alternating poly(bichalcogenophene)s—PSSe, PSTe, and PSeTe—through a chain-growth mechanism. The ring-walking of the Ni catalyst from the lighter to the heavier chalcogenophene facilitated subsequent oxidative addition, thereby suppressing the possibility of chain-transfer or chain-termination. More significantly, the Ni catalyst could walk over the distance of three rings (ca. 1 nm)—from a thiophene unit via a selenophene unit to a tellurophene unit—to form PSSeTe, the first ABC-type regioregular and periodic poly(terchalcogenophene) comprising three different types of 3-hexylchalcogenophenes.

Three unsymmetrical diiodobichalcogenophenes SSeI2, STeI2, and SeTeI2 and a diiodoterchalcogenophene SSeTeI2 were prepared to synthesize a new class of polychalcogenophenes with precisely controlled sequences by catalyst-transfer polycondensation.  相似文献   

6.
Herein, we report the development of a facile synthetic strategy for constructing diverse peptide structural architectures via chemoselective peptide ligation. The key advancement involved is to utilize the benzofuran moiety as the peptide salicylaldehyde ester surrogate, and Dap–Ser/Lys–Ser dipeptide as the hydroxyl amino functionality, which could be successfully introduced at the side chain of peptides enabling peptide ligation. With this method, the side chain-to-side chain cyclic peptide, branched/bridged peptides, tailed cyclic peptides and multi-cyclic peptides have been designed and successfully synthesized with native peptidic linkages at the ligation sites. This strategy has provided an alternative strategic opportunity for synthetic peptide development. It also serves as an inspiration for the structural design of PPI inhibitors with new modalities.

Methods of introducing peptide salicylaldehyde esters and hydroxyl amine functionality into the peptide side chain have been developed. Diverse peptide structural motifs were constructed via ligation with native amide linkages at the ligation sites.  相似文献   

7.
Protein–protein interactions (PPIs) are implicated in the majority of cellular processes by enabling and regulating the function of individual proteins. Thus, PPIs represent high-value, but challenging targets for therapeutic intervention. The development of constrained peptides represents an emerging strategy to generate peptide-based PPI inhibitors, typically mediated by α-helices. The approach can confer significant benefits including enhanced affinity, stability and cellular penetration and is ingrained in the premise that pre-organization simultaneously pays the entropic cost of binding, prevents a peptide from adopting a protease compliant β-strand conformation and shields the hydrophilic amides from the hydrophobic membrane. This conceptual blueprint for the empirical design of peptide-based PPI inhibitors is an exciting and potentially lucrative way to effect successful PPI inhibitor drug-discovery. However, a plethora of more subtle effects may arise from the introduction of a constraint that include changes to binding dynamics, the mode of recognition and molecular properties. In this review, we summarise the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour across a range of constraining chemistries and targets, to highlight the tremendous success that has been achieved with constrained peptides alongside emerging design opportunities and challenges.

This review summarizes the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour for peptides targeting α-helix mediated protein–protein interactions.  相似文献   

8.
Non-ribosomal peptide synthesis is an important biosynthesis pathway in secondary metabolism. In this study we have investigated modularisation and redesign strategies for the glycopeptide antibiotic teicoplanin. Using the relocation or exchange of domains within the NRPS modules, we have identified how to initiate peptide biosynthesis and explored the requirements for the functional reengineering of both the condensation/adenylation domain and epimerisation/condensation domain interfaces. We have also demonstrated strategies that ensure communication between isolated NRPS modules, leading to new peptide assembly pathways. This provides important insights into NRPS reengineering of glycopeptide antibiotic biosynthesis and has broad implications for the redesign of other NRPS systems.

Redesign of the non-ribosomal peptide synthetase (NRPS) from teicoplanin biosynthesis has been extensively investigated via domain exchange, interface reengineering and through engineering communication between isolated NRPS modules.  相似文献   

9.
《Chemical science》2021,12(48):15975
Macrocyclic peptides have the potential to address intracellular protein–protein interactions (PPIs) of high value therapeutic targets that have proven largely intractable to small molecules. Here, we report broadly applicable lessons for applying this modality to intracellular targets and specifically for advancing chemical matter to address KRAS, a protein that represents the most common oncogene in human lung, colorectal and pancreatic cancers yet is one of the most challenging targets in human disease. Specifically, we focused on KRpep-2d, an arginine-rich KRAS-binding peptide with a disulfide-mediated macrocyclic linkage and a protease-sensitive backbone. These latter redox and proteolytic labilities obviated cellular activity. Extensive structure–activity relationship studies involving macrocyclic linker replacement, stereochemical inversion, and backbone α-methylation, gave a peptide with on-target cellular activity. However, we uncovered an important generic insight – the arginine-dependent cell entry mechanism limited its therapeutic potential. In particular, we observed a strong correlation between net positive charge and histamine release in an ex vivo assay, thus making this series unsuitable for advancement due to the potentially fatal consequences of mast cell degranulation. This observation should signal to researchers that cationic-mediated cell entry – an approach that has yet to succeed in the clinic despite a long history of attempts – carries significant therapy-limiting safety liabilities. Nonetheless, the cell-active molecules identified here validate a unique inhibitory epitope on KRAS and thus provide valuable molecular templates for the development of therapeutics that are desperately needed to address KRAS-driven cancers – some of the most treatment-resistant human malignancies.

Targeting undruggable intracellular proteins with peptides: novel on-target macrocyclic peptide inhibitors of KRAS with broad inhibition of proliferation of multiple KRAS-dependent cancer cell lines.  相似文献   

10.
Lanthipeptides are characterized by thioether crosslinks formed by post-translational modifications. The cyclization process that favors a single ring pattern over many other possible ring patterns has been the topic of much speculation. Recent studies suggest that for some systems the cyclization pattern and stereochemistry is determined not by the enzyme, but by the sequence of the precursor peptide. However, the factors that govern the outcome of the cyclization process are not understood. This study presents the three-dimensional structures of seven lanthipeptides determined by nuclear magnetic resonance spectroscopy, including five prochlorosins and the two peptides that make up cytolysin, a virulence factor produced by Enterococcus faecalis that is directly linked to human disease. These peptides were chosen because their substrate sequence determines either the ring pattern (prochlorosins) or the stereochemistry of cyclization (cytolysins). We present the structures of prochlorosins 1.1, 2.1, 2.8, 2.10 and 2.11, the first three-dimensional structures of prochlorosins. Our findings provide insights into the molecular determinants of cyclization as well as why some prochlorosins may be better starting points for library generation than others. The structures of the large and small subunits of the enterococcal cytolysin show that these peptides have long helical stretches, a rare observation for lanthipeptides characterized to date. These helices may explain their pore forming activity and suggest that the small subunit may recognize a molecular target followed by recruitment of the large subunit to span the membrane.

To understand factors that determine ring pattern and stereochemistry of thioether cyclization of lanthipeptide natural products, the structures of five prochlorosins (blue) and two enterococcal cytolysins (red) were determined by NMR spectroscopy.  相似文献   

11.
In nature, coordinated communication between different entities enables a group to accomplish sophisticated functionalities that go beyond those carried out by individual agents. The possibility of programming and developing coordinated communication networks at the nanoscale—based on the exchange of chemical messengers—may open new approaches in biomedical and communication areas. Here, a stimulus-responsive circular model of communication between three nanodevices based on enzyme-functionalized Janus Au–mesoporous silica capped nanoparticles is presented. The output in the community of nanoparticles is only observed after a hierarchically programmed flow of chemical information between the members.

A community of three nanodevices communicates through a hierarchically programmed circular flow of chemical information between members.  相似文献   

12.
Macrocyclic peptides are an important class of bioactive substances. When inserting an aromatic foldamer segment in a macrocyclic peptide, the strong folding propensity of the former may influence the conformation and alter the properties of the latter. Such an insertion is relevant because some foldamer–peptide hybrids have recently been shown to be tolerated by the ribosome, prior to forming macrocycles, and can thus be produced using an in vitro translation system. We have investigated the interplay of peptide and foldamer conformations in such hybrid macrocycles. We show that foldamer helical folding always prevails and stands as a viable means to stretch, i.e. unfold, peptides in a solvent dependent manner. Conversely, the peptide systematically has a reciprocal influence and gives rise to strong foldamer helix handedness bias as well as foldamer helix stabilisation. The hybrid macrocycles also show resistance towards proteolytic degradation.

When peptides and helical aromatic foldamers are combined in a macrocycle, an interplay of their properties is observed, including helix handedness bias, helix stabilisation, peptide stretching and peptide resistance to proteolytic degradation.  相似文献   

13.
Natural disulfide-rich peptides (DRPs) are valuable scaffolds for the development of new bioactive molecules and therapeutics. However, there are only a limited number of topologically distinct DRP folds in nature, and most of them suffer from the problem of in vitro oxidative folding. Thus, strategies to design DRPs with new constrained topologies beyond the scope of natural folds are desired. Herein we report a general evolution-inspired strategy to design new DRPs with diverse disulfide frameworks, which relies on the incorporation of two cysteine residues and a random peptide sequence into a precursor disulfide-stabilized fold. These peptides can spontaneously fold in redox buffers to the expected tricyclic topologies with high yields. Moreover, we demonstrated that these DRPs can be used as templates for the construction of phage-displayed peptide libraries, enabling the discovery of new DRP ligands from fully randomized sequences. This study thus paves the way for the development of new DRP ligands and therapeutics with structures not derived from natural DRPs.

A general method was developed to design multicyclic peptides with diverse disulfide frameworks amenable to random peptide library design, enabling the development of new disulfide-rich peptide ligands and therapeutics with structures not derived from natural peptides.  相似文献   

14.
Messenger RNA display of peptides containing non-proteinogenic amino acids, referred to as RaPID system, has become one of the leading methods to express libraries consisting of more than trillion-members of macrocyclic peptides, which allows for discovering de novo bioactive ligands. Ideal macrocyclic peptides should have dissociation constants (KD) as low as single-digit values in the nanomolar range towards a specific target of interest. Here, a twofold strategy to discover optimized macrocyclic peptides within this affinity regime is described. First, benzyl thioether cyclized peptide libraries were explored to identify tight binding hits. To obtain more insights into critical sequence information, sequence alignment was applied to guide rational mutagenesis for the improvement of their binding affinity. Using this twofold strategy, benzyl thioether macrocyclic peptide binders against Lys48-linked ubiquitin dimer (K48-Ub2) were successfully obtained that display KD values in the range 0.3–1.2 nm , which indicate binding two orders of magnitude stronger than those of macrocyclic peptides recently reported. Most importantly, this macrocyclic peptide also showed an improved cellular inhibition of the K48-Ub2 recognition by deubiquitinating enzymes and the 26S proteasome, resulting in the promotion of apoptosis in cancer cells.  相似文献   

15.
Constrained peptides are promising next-generation therapeutics. Peptide stapling is a particularly attractive technique to generate constrained macrocycles with improved biological activity and metabolic stability. We introduce a biocompatible two-component stapling approach based on the reagent 2,6-dicyanopyridine and a pseudo-cysteine amino acid. Stapling can proceed either directly on-resin during solid-phase synthesis or following isolation of the linear peptide. The stapling reaction is orthogonal to natural amino acid side chains and completes in aqueous solution at physiological pH, enabling its direct use in biochemical assays. We performed a small screening campaign of short peptides targeting the Zika virus protease NS2B-NS3, allowing the direct comparison of linear with in situ stapled peptides. A stapled screening hit showed over 28-fold stronger inhibition than its linear analogue, demonstrating the successful identification of constrained peptide inhibitors.

A synthetically straightforward and biocompatible peptide-stapling strategy that can be used directly in biochemical assays to identify constrained enzyme inhibitors.  相似文献   

16.
Chemical synthesis of proteins with poor solubility presents a challenging task. The existing solubilizing tag strategies are not suitable for the expressed protein segment. To address this issue, we report herein that solubilizing tags could be introduced at the side chain of the peptide and C-terminal peptide salicylaldehyde esters via a disulfide linker. Such reducible solubilizing tags (RSTs) are compatible with peptide salicylaldehyde ester-mediated Ser/Thr ligation and Cys/Pen ligation for purifying and ligating peptides with poor solubility. This strategy features operational simplicity and readily accessible materials. Both the protein 2B4 cytoplasmic tail and FCER1G protein have been successfully synthesized via this strategy. Of particular note, the RST strategy could be used for solubilizing the expressed protein segment for protein semi-synthesis of the HMGB1 protein.

The reducible solubilizing tag strategy served as a simple and powerful method for the chemical synthesis and semi-synthesis via Ser/Thr ligation and Cys/Pen ligation of extensive self-assembly peptides, membrane proteins with poor solubility.  相似文献   

17.
Tissue regeneration is a crucial self-renewal capability involving many complex biological processes. Although transgenic techniques and fluorescence immunohistochemical staining have promoted our understanding of tissue regeneration, simultaneous quantification and visualization of tissue regeneration processes is not easy to achieve. Herein, we developed a simple and quantitative method for the real-time and non-invasive observation of the process of tissue regeneration. The synthesized ratiometric aggregation-induced-emission (AIE) probe exhibits high selectivity and reversibility for pH responses, good ability to map lysosomal pH both in vitro and in vivo, good biocompatibility and excellent photostability. The caudal fin regeneration of a fish model (medaka larvae) was monitored by tracking the lysosomal pH change. It was found that the mean lysosomal pH is reduced during 24–48 hpa to promote the autophagic activity for cell debris degradation. Our research can quantify the changes in mean lysosomal pH and also exhibit its distribution during the caudal fin regeneration. We believe that the AIE-active lysosomal pH probe can also be potentially used for long-term tracking of various lysosome-involved biological processes, such as tracking the stress responses of tissue, tracking the inflammatory responses, and so on.

An AIE-active ratiometric probe for the first time achieved the long-term quantification of lysosomal pH during the medaka larva''s caudal fin regeneration.  相似文献   

18.
A photoredox-catalyzed oxidative decarboxylative coupling of small peptides is reported, giving access to a variety of N,O-acetals. They were used as intermediates for the addition of phenols and indoles, leading to novel peptide scaffolds and bioconjugates. Amino acids with nucleophilic side chains, such as serine, threonine, tyrosine and tryptophan, could also be used as partners to access tri- and tetrapeptide derivatives with non-natural cross-linking.

A photoredox approach for the generation of N-acyliminiums derived from peptides enabling diversification via Friedel–Crafts reactions.  相似文献   

19.
Pseudomonas aeruginosa is a difficult-to-treat Gram-negative bacterial pathogen causing life-threatening infections. Adaptive resistance (AR) to cationic peptide antibiotics such as polymyxin B impairs the therapeutic success. This self-protection is mediated by two component systems (TCSs) consisting of a membrane-bound histidine kinase and an intracellular response regulator (RR). As phosphorylation of the key RR aspartate residue is transient during signaling and hydrolytically unstable, the study of these systems is challenging. Here, we apply a tailored reverse polarity chemical proteomic strategy to capture this transient modification and read-out RR phosphorylation in complex proteomes using a nucleophilic probe. In-depth mechanistic insights into an ideal trapping strategy were performed with a recombinant RR demonstrating the importance of fine-tuned acidic pH values to facilitate the attack on the aspartate carbonyl C-atom and prevent unproductive hydrolysis. Analysis of Bacillus subtilis and P. aeruginosa proteomes revealed the detection of multiple annotated phosphoaspartate (pAsp) sites of known RRs in addition to many new potential pAsp sites. With this validated strategy we dissected the signaling of dynorphin A, a human peptide stress hormone, which is sensed by P. aeruginosa to prepare AR. Intriguingly, our methodology identified CprR as an unprecedented RR in dynorphin A interkingdom signaling.

Phosphoaspartate (pAsp) is a labile posttranslational modification involved in bacterial signaling. To monitor pAsp we designed a chemical proteomics method and revealed insights into the antimicrobial response triggered by a human peptide hormone.  相似文献   

20.
Tumor associated carbohydrate antigens (TACAs), such as the Tn antigen, have emerged as key targets for the development of synthetic anticancer vaccines. However, the induction of potent and functional immune responses has been challenging and, in most cases, unsuccessful. Herein, we report the design, synthesis and immunological evaluation in mice of Tn-based vaccine candidates with multivalent presentation of the Tn antigen (up to 16 copies), both in its native serine-linked display (Tn-Ser) and as an oxime-linked Tn analogue (Tn-oxime). The high valent vaccine prototypes were synthesized through a late-stage convergent assembly (Tn-Ser construct) and a versatile divergent strategy (Tn-oxime analogue), using chemoselective click-type chemistry. The hexadecavalent Tn-oxime construct induced robust, Tn-specific humoral and CD4+/CD8+ cellular responses, with antibodies able to bind the Tn antigen on the MCF7 cancer cell surface. The superior synthetic accessibility and immunological properties of this fully-synthetic vaccine prototype makes it a compelling candidate for further advancement towards safe and effective synthetic anticancer vaccines.

A fully-synthetic anticancer vaccine candidate incorporating an hexadecavalent Tn antigen analogue display via oxime linkages induced tumor-specific IgG antibodies and cellular immune responses in mice coadministered with QS-21 as an adjuvant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号