首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work crude Agaricus bisporus extract (ABE) has been prepared and characterized by its tyrosinase activity, protein composition and substrate specificity. The presence of mushroom tyrosinase (PPO3) in ABE has been confirmed using two-dimensional electrophoresis, followed by MALDI TOF/TOF MS-based analysis. GH27 alpha-glucosidases, GH47 alpha-mannosidases, GH20 hexosaminidases, and alkaline phosphatases have been also detected in ABE. ABE substrate specificity has been studied using 19 phenolic compounds: polyphenols (catechol, gallic, caffeic, chlorogenic, and ferulic acids, quercetin, rutin, dihydroquercetin, l-dihydroxyphenylalanine, resorcinol, propyl gallate) and monophenols (l-tyrosine, phenol, p-nitrophenol, o-nitrophenol, guaiacol, o-cresol, m-cresol, p-cresol). The comparison of ABE substrate specificity and affinity to the corresponding parameters of purified A. bisporus tyrosinase has revealed no major differences. The conditions for spectrophotometric determination have been chosen and the analytical procedures for determination of 1.4 × 10−4–1.0 × 10−3 M l-tyrosine, 3.1 × 10−6–1.0 × 10−4 M phenol, 5.4 × 10−5–1.0 × 10−3 M catechol, 8.5 × 10−5–1.0 × 10−3 M caffeic acid, 1.5 × 10−4–7.5 × 10−4 M chlorogenic acid, 6.8 × 10−5–1.0 × 10−3 M l-DOPA have been proposed. The procedures have been applied for the determination of l-tyrosine in food supplements, l-DOPA in synthetic serum, and phenol in waste water from the food manufacturing plant. Thus, we have demonstrated the possibility of using ABE as a substitute for tyrosinase in such analytical applications, as food supplements, medical and environmental analysis.  相似文献   

2.
The emetic Bacillus cereus toxin cereulide presents an enormous safety hazard in the food industry, inducing emesis and nausea after the consumption of contaminated foods. Additional to cereulide itself, seven structurally related isoforms, namely the isocereulides A–G, have already been elucidated in their chemical structure and could further be identified in B. cereus contaminated food samples. The newly performed isolation of isocereulide A allowed, for the first time, 1D- and 2D-NMR spectroscopy of a biosynthetically produced isocereulide, revealing results that contradict previous assumptions of an l-O-Leu moiety within its chemical structure. By furthermore applying posthydrolytical dipeptide analysis, amino acid and α-hydroxy acid analysis by means of UPLC-ESI-TOF-MS, as well as MSn sequencing, the structure of previously reported isocereulide A could be corrected. Instead of the l-O-Leu as assumed to date, one l-O-Ile unit could be verified in the cyclic dodecadepsipeptide, revising the structure of isocereulide A to [(d-O-Leu-d-Ala-l-O-Val-l-Val)2(d-O-Leu-d-Ala-l-O-Ile-l-Val)].  相似文献   

3.
The species Pseudogymnoascus is known as a psychrophilic pathogenic fungus which is ubiquitously distributed in Antarctica. While the studies of its secondary metabolites are infrequent. Systematic research of the metabolites of the Antarctic fungus Pseudogymnoascus sp. HSX2#-11 led to the isolation of one new pyridine derivative, 4-(2-methoxycarbonyl-ethyl)-pyridine-2-carboxylic acid methyl ester (1), together with one pyrimidine, thymine (2), and eight diketopiperazines, cyclo-(dehydroAla-l-Val) (3), cyclo-(dehydroAla-l-Ile) (4), cyclo-(dehydroAla-l-Leu) (5), cyclo-(dehydroAla-l-Phe) (6), cyclo-(l-Val-l-Phe) (7), cyclo-(l-Leu-l-Phe) (8), cyclo-(l-Trp-l-Ile) (9) and cyclo-(l-Trp-l-Phe) (10). The structures of these compounds were established by extensive spectroscopic investigation, as well as by detailed comparison with literature data. This is the first report to discover pyridine, pyrimidine and diketopiperazines from the genus of Pseudogymnoascus.  相似文献   

4.
5.
Uranium nitride compounds are important molecular analogues of uranium nitride materials such as UN and UN2 which are effective catalysts in the Haber–Bosch synthesis of ammonia, but the synthesis of molecular nitrides remains a challenge and studies of the reactivity and of the nature of the bonding are poorly developed. Here we report the synthesis of the first nitride bridged uranium complexes containing U(vi) and provide a unique comparison of reactivity and bonding in U(vi)/U(vi), U(vi)/U(v) and U(v)/U(v) systems. Oxidation of the U(v)/U(v) bis-nitride [K2{U(OSi(OtBu)3)3(μ-N)}2], 1, with mild oxidants yields the U(v)/U(vi) complexes [K{U(OSi(OtBu)3)3(μ-N)}2], 2 and [K2{U(OSi(OtBu)3)3}2(μ-N)2(μ-I)], 3 while oxidation with a stronger oxidant (“magic blue”) yields the U(vi)/U(vi) complex [{U(OSi(OtBu)3)3}2(μ-N)2(μ-thf)], 4. The three complexes show very different stability and reactivity, with N2 release observed for complex 4. Complex 2 undergoes hydrogenolysis to yield imido bridged [K2{U(OSi(OtBu)3)3(μ-NH)}2], 6 and rare amido bridged U(iv)/U(iv) complexes [{U(OSi(OtBu)3)3}2(μ-NH2)2(μ-thf)], 7 while no hydrogenolysis could be observed for 4. Both complexes 2 and 4 react with H+ to yield quantitatively NH4Cl, but only complex 2 reacts with CO and H2. Differences in reactivity can be related to significant differences in the U–N bonding. Computational studies show a delocalised bond across the U–N–U for 1 and 2, but an asymmetric bonding scheme is found for the U(vi)/U(vi) complex 4 which shows a U–N σ orbital well localised to U Created by potrace 1.16, written by Peter Selinger 2001-2019 N and π orbitals which partially delocalise to form the U–N single bond with the other uranium.

The first examples of molecular compounds containing the cyclic (U(vi)N)2 and (U(v)U(vi)N)2 cores were obtained by oxidation of the (U(v)U(v)N)2 analogue. Different bonding within these complexes yields different stability and reactivity with CO and H2.  相似文献   

6.
The reaction of o-nitroiodobenzene and mCPBA in acetic acid was found to afford a novel hypervalent iodine compound, in the structure of which both iodine(iii) and iodine(v) moieties coexist. The nitro groups at the ortho phenyl positions were found to be crucial in stabilizing this uncommon structure. This novel hypervalent iodine(iii/v) oxidant is proved to be effective in realizing the synthesis of 2-unsubstitued 2H-azirines via intramolecular oxidative azirination, which could not be efficiently achieved by the existing known hypervalent iodine reagents.

The reaction of o-nitroiodobenzene and mCPBA in AcOH was found to afford a novel hypervalent iodine compound which both iodine(iii) and iodine(v) moieties coexist. This new reagent is proved to be effective in realizing the synthesis of 2H-azirines.  相似文献   

7.
We report kinetically controlled chiral supramolecular polymerization based on ligand–metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5–1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation–elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔHe values for the aggregates I and II were calculated using the van''t Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.

The nanoparticles were transformed into the supramolecular polymer as the thermodynamic product, involving a helical inversion from left-handed to right-handed helicity.  相似文献   

8.
We introduce the formation and characterization of heterometallic single-chain nanoparticles entailing both catalytic and luminescent properties. A terpolymer containing two divergent ligand moieties, phosphines and phosphine oxides, is synthesized and intramolecularly folded into nanoparticles via a selective metal complexation of Pt(ii) and Eu(iii). The formation of heterometallic Eu(iii)/Pt(ii) nanoparticles is evidenced by size exclusion chromatography, multinuclear NMR (1H, 31P{1H}, 19F, 195Pt) as well as diffusion-ordered NMR and IR spectroscopy. Critically, we demonstrate the activity of the SCNPs as a homogeneous and luminescent catalytic system in the amination reaction of allyl alcohol.

A bifunctional terpolymer containing two orthogonal ligand moieties was synthesized, giving way to the facile formation of heterometallic Eu(iii)/Pt(ii) single-chain nanoparticles, which display both catalytic and luminescent properties.  相似文献   

9.
A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides. The reaction proceeds via a selective reaction between the l-peptide and the l-sugar producing an Amadori rearrangement byproduct and leaving d-glyceraldehyde in excess. Solubility considerations in the synthesis of proline–valine (pro–val) peptides allow nearly enantiopure pro–val to be formed starting from racemic pro and nearly racemic (10%) ee val. (ee = enantiomeric excess = (|dl|)/(d + l)) Thus enantioenrichment of glyceraldehyde is achieved in a system with minimal initial chiral bias. This work demonstrates synergy between amino acids and sugars in the emergence of biological homochirality.

A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides.  相似文献   

10.
Efficient C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles have been developed. The former route enables C4-arylation in a highly efficient and mild manner and the latter route provides an alternative straightforward protocol for synthesis of C2/C4 disubstituted indoles. The mechanism studies imply that the different reaction pathways were tuned by the distinct acid additives, which led to either the Pd(i)–Pd(ii) pathway or Pd(ii) catalysis.

C4-arylation via Pd(i)–Pd(ii) catalysis and domino C4-arylation/3,2-carbonyl migration of indoles via Pd(ii) catalysis tuning by acids have been developed.  相似文献   

11.
Nanozymes as a newcomer in the artificial enzyme family have shown several advantages over natural enzymes such as their high stability in harsh environments, facile production on large scale, long storage time, low costs, and higher resistance to biodegradation. However, compared with natural enzymes, it is still a great challenge to design a nanozyme with high selectivity, especially high enantioselectivity. It is highly desirable and demanding to develop chiral nanozymes with high and on-demand enantioselectivity for practical applications. Herein, we present an unprecedented approach to construct chiral artificial peroxidase with ultrahigh enantioselectivity. Inspired by the structure of the natural enzyme horseradish peroxidase (HRP), we have constructed a series of stereoselective nanozymes (Fe3O4@Poly(AA)) by using the ferromagnetic nanoparticle (Fe3O4 NP) yolk as the catalytic core and amino acid-appended chiral polymer shell as the chiral selector. Among them, Fe3O4@Poly(d-Trp) exhibits the highest enantioselectivity. More intriguingly, their enantioselectivity will be readily reversed by replacing d-Trp with l-Trp. The selectivity factor is up to 5.38, even higher than that of HRP. Kinetic parameters, dialysis experiments, and molecular simulations together with activation energy reveal that the selectivity originates from the d-/l-Trp appended polymer shell, which can result in better affinity and catalytic activity to d-/l-tyrosinol. The artificial peroxidases have been used for asymmetric catalysis to prepare enantiopure d- or l-enantiomers. Besides, by using fluorescent labelled FITC-tyrosinolL and RhB-tyrosinolD, the artificial peroxidases can catalyze green or red fluorescent chiral tyrosinol to selectively label live yeast cells among yeast, S. aureus, E. coli and B. subtilis bacterial cells. This work opens a new avenue for better design of stereoselective artificial enzymes.

A yolk–shell stereoselective nanozyme is designed with a chiral selector. Nanozyme with D-/L-tryptophan possesses high selectivity towards D-/L-tyrosinol and can catalyze chiral tyrosinol to selectively label live yeast cells.  相似文献   

12.
Selective activation of prodrugs at diseased tissue through bioorthogonal catalysis represents an attractive strategy for precision cancer treatment. Achieving efficient prodrug photoactivation in cancer cells, however, remains challenging. Herein, we report two Pt(iv) complexes, designated as rhodaplatins {rhodaplatin 1, [Pt(CBDCA-O,O)(NH3)2(RhB)OH]; rhodaplatin 2, [Pt(DACH)ox(RhB)(OH)], where CBDCA is cyclobutane-1,1-dicarboxylate, RhB is rhodamine B, DACH is (1R,2R)-1,2-diaminocyclohexane, and ox is oxalate}, that bear an internal photoswitch to realize efficient accumulation, significant co-localization, and subsequent effective photoactivation in cancer cells. Compared with the conventional platform of external photocatalyst plus substrate, rhodaplatins presented up to 4.8 104-fold increased photoconversion efficiency in converting inert Pt(iv) prodrugs to active Pt(ii) species under physiological conditions, due to the increased proximity and covalent bond between the photoswitch and Pt(iv) substrate. As a result, rhodaplatins displayed increased photocytotoxicity compared with a mixture of RhB and conventional Pt(iv) compound in cancer cells including Pt-resistant ones. Intriguingly, rhodaplatin 2 efficiently accumulated in the mitochondria and induced apoptosis without causing genomic DNA damage to overcome drug resistance. This work presents a new approach to develop highly effective prodrugs containing intramolecular photoswitches for potential medical applications.

The newly developed Pt(iv) prodrugs, rhodaplatins, contain an internal photoswitch and present up to 4.8 104-fold increased photoconversion efficiency compared to the conventional photocatalyst plus Pt(iv) prodrug photocatalysis platform.  相似文献   

13.
The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9–4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.  相似文献   

14.
Chiral nonbonding interaction with N-protected amino acid methyl esters used as chiral additives in achiral solvents allows dynamic induction of single-handed helical conformation in poly(quinoxaline-2,3-diyl)s (PQX) bearing only achiral substituents. Ac-l-Pro-OMe, for instance, allows induction of energy preference of 0.16 kJ mol−1 per monomer unit for the M-helical structure over the P-helix in t-butyl methyl ether (MTBE). With this new mode of screw-sense induction, homochiral screw-sense has been induced in virtually achiral poly(quinoxaline-2,3-diyl)s 1000-mer containing phosphine pendants (PQXphos). Use of PQXphos as a helically dynamic ligand along with Ac-Pro-OMe (l or d) as a chiral additive in MTBE allowed a highly enantioselective Suzuki–Miyaura coupling reaction with up to 95% enantiomeric excess.

Achiral poly(quinoxaline-2,3-diyl) containing Ar2P groups undergo dynamic induction of M-helical conformation through nonbonding interaction with protected AA such as Ac-l-Pro-OMe, serving as a chiral ligand in asymmetric cross-coupling with up to 95% ee.  相似文献   

15.
A novel dinuclear platinum(ii) complex featuring a ditopic, bis-tetradentate ligand has been prepared. The ligand offers each metal ion a planar O^N^C^N coordination environment, with the two metal ions bound to the nitrogen atoms of a bridging pyrimidine unit. The complex is brightly luminescent in the red region of the spectrum with a photoluminescence quantum yield of 83% in deoxygenated methylcyclohexane solution at ambient temperature, and shows a remarkably short excited state lifetime of 2.1 μs. These properties are the result of an unusually high radiative rate constant of around 4 × 105 s−1, a value which is comparable to that of the very best performing Ir(iii) complexes. This unusual behaviour is the result of efficient thermally activated reverse intersystem crossing, promoted by a small singlet–triplet energy difference of only 69 ± 3 meV. The complex was incorporated into solution-processed OLEDs achieving EQEmax = 7.4%. We believe this to be the first fully evidenced report of a Pt(ii) complex showing thermally activated delayed fluorescence (TADF) at room temperature, and indeed of a Pt(ii)-based delayed fluorescence emitter to be incorporated into an OLED.

Efficient thermally activated delayed fluorescence (TADF) in a brightly luminescent diplatinum(ii) complex results in significant enhancement of the radiative decay rate.  相似文献   

16.
Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)–H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)–H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd–C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C–O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG 0–6 kcal mol−1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)–Pd(iv)–Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.

This work uses DFT calculations to explore Pd(ii)-catalysed iodine(iii)-mediated alkoxylation of unactivated C(sp3)–H bonds and reveals how important the isomerization is in triggering the oxidative addition of ArIX2 to Pd(ii).  相似文献   

17.
Amino acids have a wide range of biological activities, which usually rely on the stereoisomer presented. In this study, glycine and 21 common α-amino acids were investigated for their herbicidal property against Chinese amaranth (Amaranthus tricolor L.) and barnyard grass (Echinochloa crus-galli (L.) Beauv.). Both d- and l-isomers, as well as a racemic mixture, were tested and found that most compounds barely inhibited germination but moderately suppressed seedling growth. Various ratios of d:l-mixture were studied and synergy between enantiomers was found. For Chinese amaranth, the most toxic d:l-mixtures were at 3:7 (for glutamine), 8:2 (for methionine), and 5:5 (for tryptophan). For barnyard grass, rac-glutamine was more toxic than the pure forms; however, d-tryptophan exhibited greater activity than racemate and l-isomer, indicating the sign of enantioselective toxicity. The mode of action was unclear, but d-tryptophan caused bleaching of leaves, indicating pigment synthesis of the grass was inhibited. The results highlighted the enantioselective and synergistic toxicity of some amino acids, which relied upon plant species, chemical structures, and concentrations. Overall, our finding clarifies the effect of stereoisomers, and provides a chemical clue of amino acid herbicides, which may be useful in the development of herbicides from natural substances.  相似文献   

18.
The redox chemistry of uranium is dominated by single electron transfer reactions while single metal four-electron transfers remain unknown in f-element chemistry. Here we show that the oxo bridged diuranium(iii) complex [K(2.2.2-cryptand)]2[{((Me3Si)2N)3U}2(μ-O)], 1, effects the two-electron reduction of diphenylacetylene and the four-electron reduction of azobenzene through a masked U(ii) intermediate affording a stable metallacyclopropene complex of uranium(iv), [K(2.2.2-cryptand)][U(η2-C2Ph2){N(SiMe3)2}3], 3, and a bis(imido)uranium(vi) complex [K(2.2.2-cryptand)][U(NPh)2{N(SiMe3)2}3], 4, respectively. The same reactivity is observed for the previously reported U(ii) complex [K(2.2.2-cryptand)][U{N(SiMe3)2}3], 2. Computational studies indicate that the four-electron reduction of azobenzene occurs at a single U(ii) centre via two consecutive two-electron transfers and involves the formation of a U(iv) hydrazide intermediate. The isolation of the cis-hydrazide intermediate [K(2.2.2-cryptand)][U(N2Ph2){N(SiMe3)2}3], 5, corroborated the mechanism proposed for the formation of the U(vi) bis(imido) complex. The reduction of azobenzene by U(ii) provided the first example of a “clear-cut” single metal four-electron transfer in f-element chemistry.

Both a masked and the actual complex [U(ii){N(SiMe3)2}3]+ effect the reduction of azobenzene to yield a U(vi) bis-imido species providing the first example of a “clear-cut” metal centred four-electron reduction in f-element chemistry.  相似文献   

19.
A highly selective ruthenium-catalyzed C–H activation/annulation of alkyne-tethered N-alkoxybenzamides has been developed. In this reaction, diverse products from inverse annulation can be obtained in moderate to good yields with high functional group compatibility. Insightful experimental and theoretical studies indicate that the reaction to the inverse annulation follows the Ru(ii)–Ru(iv)–Ru(ii) pathway involving N–O bond cleavage prior to alkyne insertion. This is highly different compared to the conventional mechanism of transition metal-catalyzed C–H activation/annulation with alkynes, involving alkyne insertion prior to N–O bond cleavage. Via this pathway, the in situ generated acetic acid from the N–H/C–H activation step facilitates the N–O bond cleavage to give the Ru-nitrene species. Besides the conventional mechanism forming the products via standard annulation, an alternative and novel Ru(ii)–Ru(iv)–Ru(ii) mechanism featuring N–O cleavage preceding alkyne insertion has been proposed, affording a new understanding of transition metal-catalyzed C–H activation/annulation.

A highly selective ruthenium-catalyzed C–H activation/annulation through a pathway involving N–O bond cleavage prior to alkyne insertion is developed.  相似文献   

20.
Cyclodextrins are widely used cyclic oligosaccharides of d-glucose whose hydrophilic exterior is covered by hydroxyl groups and whose hydrophobic interior is surrounded by lipophilic moieties. Because of this structural feature, cyclodextrin molecules commonly aggregate into dimensional structures via intermolecular hydrogen bonds, and their aggregation into closed oligomeric architectures has been achieved only via the attachment of functional substituent groups to the cyclodextrin rings. Here, we report the first structurally characterized self-assembly of non-substituted γ-cyclodextrin molecules into cyclic hexamers, which was realized in a chiral coordination framework composed of complex-anions with d-penicillamine rather than l- or dl-penicillamine. The self-assembly is accompanied by the 3D-to-2D structural transformation of porous coordination frameworks to form helical hexagonal cavities that accommodate helical γ-cyclodextrin hexamers. This finding provides new insight into the development of cyclodextrin chemistry and host–guest chemistry based on chiral recognition and crystal engineering processes.

The complex anions with d-penicillamine are organized into a 3D porous framework that allows the inclusion of γ-CD. The inclusion is accompanied by the 3D-to-2D transformation of porous frameworks so as to accept cyclic hexamers of γ-CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号