首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By changing the ratio of reactants, two mononuclear Dy complexes, [Dy(phen)(acac)(3)] (1) and [Dy(phen)(2)(NO(3))(2)(acac)]·H(2)O (2) have been synthesized and structurally characterized. In 1, a Dy atom bearing square-antiprism coordination geometry exhibits SMM behaviour, while compound 2 with a bicapped-square-antiprism geometry does not show such SMM properties. The different magnetic behaviours seen in 1 and 2 are probably due to a different coordination environment and ligand field around the Dy(III) ions. The results proved the important influence of the structural environment of a SMM on its magnetic behaviour.  相似文献   

2.
Two new dysprosium(iii) complexes, [Dy(2)(HL(1))(4)(CO(3))]·4H(2)O (1) and [Dy(2)(L(2))(2)(NO(3))(2)(CH(3)OH)(2)]·4CH(3)CN (2), have been synthesized from the Schiff-base ligands N'-((2-hydroxy-1-naphthyl)methylene)benzohydrazide (H(2)L(1)) and N'-((2-hydroxy-1-naphthyl)methylene) picolinohydrazide (H(2)L(2)). Single-crystal X-ray diffraction studies reveal that four mono-deprotonated H(2)L(1) ligands and two di-deprotonated H(2)L(2) ligands which have undergone keto-enol tautomerism coordinate to the two dysprosium centres of complexes 1 and 2, respectively. The dc magnetic properties of complexes 1 and 2 are different. The phenoxido bridges in complex 1 mediate antiferromagnetic interaction between Dy(III) ions, while ferromagnetic interaction was clearly observed in alkoxido-bridged dinuclear complex 2. Furthermore, both complexes show frequency-dependent ac magnetic susceptibilities, indicating a slow relaxation of the magnetization, typical of SMM behaviour.  相似文献   

3.
Bis(octacyanophthalocyanine)dysprosium(III) (1) has been synthesised, characterised and magnetically studied. By the incorporation of cyano substituents on the phthalocyanine (Pc) rings, a starting point has been created for the chemical modification of double deckers for the purpose of surface self-assembly. The modification of the rings leaves the magnetic properties of the double decker largely unaffected.  相似文献   

4.
Density functional theory (DFT) calculations are presented on biomimetic model complexes of cysteine dioxygenase and focus on the effect of axial and equatorial ligand placement. Recent studies by one of us [Y. M. Badiei, M. A. Siegler and D. P. Goldberg, J. Am. Chem. Soc. 2011, 133, 1274] gave evidence of a nonheme iron biomimetic model of cysteine dioxygenase using an i-propyl-bis(imino)pyridine, equatorial tridentate ligand. Addition of thiophenol, an anion - either chloride or triflate - and molecular oxygen, led to several possible stereoisomers of this cysteine dioxygenase biomimetic complex. Moreover, large differences in reactivity using chloride as compared to triflate as the binding anion were observed. Here we present a series of DFT calculations on the origin of these reactivity differences and show that it is caused by the preference of coordination site of anion versus thiophenol binding to the chemical system. Thus, stereochemical interactions of triflate and the bulky iso-propyl substituents of the ligand prevent binding of thiophenol in the trans position using triflate. By contrast, smaller anions, such as chloride, can bind in either cis or trans ligand positions and give isomers with similar stability. Our calculations help to explain the observance of thiophenol dioxygenation by this biomimetic system and gives details of the reactivity differences of ligated chloride versus triflate.  相似文献   

5.
The reaction of NiCl2 with excess potassium pivalate (KPiv) in ethanol affords the chainpolymeric compound KNi4(Piv)7(OH)2(EtOH)6. In the solid compound, the tetranuclear nickel fragments alternate with potassium atoms. The use of KNi4(Piv)7(OH)2(EtOH)6 in the reaction with Ni(hfac)2 (hfac is the hexafluoroacetylacetonate anion) gave the first polynuclear mixed-ligand complexes [K2Ni6(Piv)7(hfac)3(OH)4(HPiv)2(Me2CO)2]·1.5C7H16, [Ni6(Piv)4(hfac)4(OH)4(Me2CO)4], [K2Ni8(Piv)8(hfac)4(OH)6(H2O)2(Me2CO)6], [Ni8(Piv)10(hfac)2(OH)2(MeO)2(MeOH)2(HPiv)2]·C6H14, and [Ni16(Piv)10(hfac)6(OH)10(MeO)6(MeOH)8(H2O)6]·C6H14 containing both Piv and hfac as the anionic ligands. The molecular and crystal structures of all these compounds were established, and their magnetic properties were studied. All solids containing simultaneously Piv and hfac ligands tend to undergo ferromagnetic ordering with decreasing temperature. The solid [Ni8(Piv)10(hfac)2(OH)2(MeO)2(MeOH)2(HPiv)2]·C6H14 undergoes cooperative magnetic ordering below T c (2.5 K). Dedicated to the 90th anniversary of the L. Ya. Karpov Institute of Physical Chemistry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1175–1182, June, 2008.  相似文献   

6.
7.
The magnetic dilution method was employed in order to elucidate the origin of the slow relaxation of the magnetization in a Dy(2) single-molecule magnet (SMM). The doping effect was studied using SQUID and micro-SQUID measurements on a Dy(2) SMM diluted in a diamagnetic Y(2) matrix. The quantum tunneling of the magnetization that can occur was suppressed by applying optimum dc fields. The dominant single-ion relaxation was found to be entangled with the neighboring Dy(III) ion relaxation within the molecule, greatly influencing the quantum tunneling of the magnetization in this complex.  相似文献   

8.
The nucleophilic addition of methanol and water to the dicyanonitrosomethanide anion, resulting in the formation of cyano(imino(methoxy)methyl)nitrosomethanide (cmnm) and carbamoylcyanonitrosomethanide (ccnm), respectively, is used as a means of in situ ligand synthesis during the formation of [Dy(8)(OH)(6)(OMe)(6)(cmnm)(10)(ccnm)(2)(H(2)O)(2)(MeOH)(2)] (1). This is the first time these reactions have been observed to be promoted by the presence of a lanthanoid ion. The core of the octanuclear cluster consists of two cubane moieties ([Dy(4)(OH)(3)(OMe)]), bridged by four methoxide ligands to form a central [Dy(8)(OH)(6)(OMe)(6)] moiety. The complex displays magnetic properties that are indicative of probable single molecule magnet features.  相似文献   

9.
《Polyhedron》2007,26(9-11):2320-2324
We report on the measurements of the spin–lattice relaxation time, T1, of Mn12O12(O2CCH2But)16(CH3OH)4 · CH3OH, a truly axial symmetry Mn12 single-molecule magnet (SMM), with the view to examining the role of point symmetry and lattice-solvate molecules in this Mn12 SMM. The measurements were made over 0.390–1.8 K, on freshly prepared single crystals which afforded much higher spectral resolution than magnetically aligned powder. The measured T1 is found to be thermally activated, and follows either a T2 or exponential behavior over 0.390–0.7 K, in contrast to the temperature-independent behavior for Mn12-acetate, where Jahn–Teller isomers are thought to be the origin of the temperature-independent nuclear relaxation mechanism.  相似文献   

10.
Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magnetic properties of the ferrocenophanes, [LnFc3(THF)2Li2], of the late trivalent lanthanide ions (Ln = Gd (1), Ho (2), Er (3), Tm (4), Yb (5), Lu (6)). One major structural trend within this class of complexes is the increasing diferrocenyl (Fc2−) average twist angle with decreasing ionic radius (rion) of the central Ln ion, resulting in the largest average Fc2− twist angles for the Lu3+ compound 6. Such high sensitivity of the twist angle to changes in rion is unique to the here presented ferrocenophane complexes and likely due to the large trigonal plane separation enforced by the ligand (>3.2 Å). This geometry also allows the non-Kramers ion Ho3+ to exhibit slow magnetic relaxation in the absence of applied dc fields, rendering compound 2 a rare example of a Ho-based single-molecule magnet (SMM) with barriers to magnetization reversal (U) of 110–131 cm−1. In contrast, compounds featuring Ln ions with prolate electron density (3–5) don''t show slow magnetization dynamics under the same conditions. The observed trends in magnetic properties of 2–5 are supported by state-of-the-art ab initio calculations. Finally, the magneto-structural relationship of the trigonal prismatic Ho-[1]ferrocenophane motif was further investigated by axial ligand (THF in 2) exchange to yield [HoFc3(THF*)2Li2] (2-THF*) and [HoFc3(py)2Li2] (2-py) motifs. We find that larger average Fc2− twist angles (in 2-THF* and 2-py as compared to in 2) result in faster magnetic relaxation times at a given temperature.

Lanthanide ferrocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to iron ions.  相似文献   

11.
12.
The reactions of [Mn12O12(O2CEt)16(H2O)4] with phenylphosphinic acid (PhHPO2H) in MeCN and MeCN/CH2Cl2 have led to isolation of [Mn22O12(O2CEt)22(O3PPh)8(H2O)8] (2) and [Mn22O12(O2CEt)20(O3PPh)8(O2PPhH)2(H2O)8]n (3), respectively, both containing PhPO3(2-) groups from in situ oxidation of PhHPO(2)(-). Complex 2 is molecular and consists of two Mn9 subunits linked by four additional Mn atoms. Complex 3 contains almost identical Mn22 units as 2, but they are linked into a one-dimensional chain structure. The Mn22 unit in both compounds is mixed-valence Mn(III)18, Mn(II)4. Solid-state, variable-temperature dc magnetic susceptibility and magnetization measurements were performed on vacuum-dried samples of 2 and 3, indicating dominant antiferromagnetic interactions. A good fit of low-temperature magnetization data for 2 could not be obtained because of problems associated with low-lying excited states, as expected for a high nuclearity complex containing Mn(II) atoms. An approximate fit using only data collected in small applied fields indicated an S = 7 or 8 ground state for 2. Solid-state ac susceptibility data established that the true ground state of 2 is S = 7 and that the connected Mn22 units of 3 are ferromagnetically coupled. Both 2 and 3 displayed weak out-of-phase ac signals indicative of slow magnetization relaxation. Single-crystal magnetization versus applied dc field scans exhibited hysteresis loops for both compounds, establishing them as new single-molecule and single-chain magnets, respectively. Complex 2 also showed steps in its hysteresis loops characteristic of quantum tunneling of magnetization, the highest nuclearity molecule to show such QTM steps. Arrhenius plots constructed from dc magnetization versus time decay plots gave effective barriers to magnetization relaxation (U(eff)) of 6 and 11 cm(-1) for 2 and 3, respectively.  相似文献   

13.
The exchange interactions in a Ni12 complex have been studied by using theoretical methods based on density functional theory. The calculated J values reproduce correctly the S = 12 ground state of this system found experimentally and indicate the presence of three different exchange interaction pathways, in agreement with previous inelastic neutron scattering experiments. The three interactions are ferromagnetic, one of them corresponding to a second-neighbor interaction through a syn-anti acetato ligand. A magnetostructural correlation was found for such coupling, confirming the ferromagnetic nature of such an interaction. Our results are in excellent agreement with two new fittings of the experimental magnetic susceptibility data. The spin density distribution of the Ni12 complex is also reported and discussed.  相似文献   

14.
15.
Ferromagnetic exchange between the ten Ni2+ ions in the complex [Ni10(tmp)2(N3)8(acac)6(MeOH)6] leads to a spin ground state of S = 10; single crystal M vs. H studies reveal the temperature and sweep rate dependent hysteresis loops expected for a single-molecule magnet.  相似文献   

16.
The optical and electrochemical properties of the ruthenium phthalocyanine complexes [[(t-Bu)4Pc]Ru(4-Rpy)2], where R = NO2, Me, NH2, and NMe2, are reported. The electron density at the macrocycle may be adjusted using the axial ligand substituents, which have varying electron-donating/withdrawing strengths. Electrochemical data show that the axial pyridine ligand substituents exert significant influence over the phthalocyanine ring-based redox processes. The axial ligands also influence the electronic absorption properties of the complexes with influence also being observed in the electrogenerated oxidized and reduced species.  相似文献   

17.
18.
[Co(Me(4)cyclam)(tropolonate)](PF(6)) was synthesised and structurally characterised. Its electronic and W-band EPR spectra have been analysed by means of the angular overlap calculation of the Spin Hamiltonian parameters that provided also a satisfactory reproduction of the temperature dependence of the magnetic susceptibility. The present results can be interpreted assuming a pseudo-octahedral character for the Co(II) center. This prompted us to reconsider the model formerly used for the analysis of the magnetic coupling between hs-Co(II) and the paramagnetic o-semiquinonate ligand in the corresponding derivatives [Co(Me(4)cyclam)(PhenSQ)](PF(6)) and [Co(Me(4)cyclam)(DTBSQ)](PF(6)). These results indicate that the effect of the magnetic coupling is active only below 50 K and that a more refined model of exchange coupling between Co(II) and semiquinonato ligands is needed to quantitatively analyze the magnetic behaviour of this class of systems.  相似文献   

19.
20.
Tritopic pyridinebis(hydrazone)-based ligands typically produce square M(9) [3 × 3] grid complexes with first-row transition-metal ions (e.g., M = Mn, Fe, Co, Cu, Zn), but with larger lanthanide ions, such coordination motifs are not produced, and instead linear trinuclear complexes appear to be a preferred option. The reaction of 2pomp [derived from pyridine-2,6-bis(hydrazone) and 2-acetylpyridine] with La(III), Gd(III), and Dy(III) salts produces helical linear trinuclear [Ln(3)(2pomp)(2)]-based complexes, where each metal ion occupies one of the three tridentate ligand pockets. Two ligands encompass the three metal ions, and internal connections between metal ions occur through μ-O(hydrazone) bridges. Coligands include benzoate, nitrate, and N,N-dimethylformamide. The linear Dy(III)(3) complex exhibits single-molecule magnet behavior, demonstrated through alternating-current susceptibility measurements. Slow thermal magnetic relaxation was detected in an external field of 1800 Oe, where quantum-tunneling effects were suppressed (U(eff) = 14 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号