首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have constructed a fiber optic device that internally flows triplet oxygen and externally produces singlet oxygen, causing a reaction at the (Z)-1,2-dialkoxyethene spacer group, freeing a pheophorbide sensitizer upon the fragmentation of a reactive dioxetane intermediate. The device can be operated and sensitizer photorelease observed using absorption and fluorescence spectroscopy. We demonstrate the preference of sensitizer photorelease when the probe tip is in contact with octanol or lipophilic media. A first-order photocleavage rate constant of 1.13 h(-1) was measured in octanol where dye desorption was not accompanied by readsorption. When the probe tip contacts aqueous solution, the photorelease was inefficient because most of the dye adsorbed on the probe tip, even after the covalent ethene spacer bonds have been broken. The observed stability of the free sensitizer in lipophilic media is reasonable even though it is a pyropheophorbide-a derivative that carries a p-formylbenzylic alcohol substituent at the carboxylic acid group. In octanol or lipid systems, we found that the dye was not susceptible to hydrolysis to pyropheophorbide-a, otherwise a pH effect was observed in a binary methanol-water system (9:1) at pH below 2 or above 8.  相似文献   

2.
Merbromin (mercurochrome)--a photosensitizer for singlet oxygen reactions.   总被引:1,自引:0,他引:1  
Merbromin, produced in many countries and used world wide as an antiseptic under the trademark "mercurochrome", is shown to be an efficient sensitizer for type II (singlet oxygen) photo-oxygenations by using 2-methyl-2-butene, (+)-limonene, (+)-alpha-pinene, alpha,alpha'-dimethylstilbenes and (--)-L-methionine as oxygen acceptors. Type I photo-oxygenations are negligible. An estimate of the quantum yield of singlet oxygen formation by merbromin in methanol gives a value of about 0.1.  相似文献   

3.
The usefulness of a fiber optic technique for generating singlet oxygen and releasing the pheophorbide photosensitizer has been increased by the fluorination of the porous Vycor glass tip. Singlet oxygen emerges through the fiber tip with 669-nm light and oxygen, releasing the sensitizer molecules upon a [2 + 2] addition of singlet oxygen with the ethene spacer and scission of a dioxetane intermediate. Switching from a nonfluorinated to a fluorinated glass tip led to a clear reduction of the adsorbtive affinity of the departing sensitizer with improved release into homogeneous toluene solution and bovine tissue, but no difference was found in water since the sensitizer was insoluble. High surface coverage of the nonafluorohexylsilane enhanced the cleavage efficiency by 15% at the ethene site. The fluorosilane groups also caused crowding and seemed to reduce access of (1)O(2) to the ethene site, which attenuated the total quenching rate constant k(T), although there was less wasted (1)O(2) (from surface physical quenching) at the fluorosilane-coated than the native SiOH silica. The observations support a quenching mechanism that the replacement of the SiOH groups for the fluorosilane C-H and C-F groups enhanced the (1)O(2) lifetime at the fiber tip interface due to less efficient electronic-to-vibronic energy transfer.  相似文献   

4.
A polymeric photosensitizer, poly(NIPAM-co-RB), consisting of N-isopropylacrylamide and rose bengal units, demonstrates a temperature-controlled changeable oxygenation selectivity by singlet oxygen in water.  相似文献   

5.
An electron donor-connecting water-soluble porphyrin, meso-(1-pyrenyl)-tris(N-methyl-p-pyridinio)porphyrin, did not demonstrate singlet oxygen generating activity under photo-irradiation. The interaction with DNA successfully recovered the photosensitized singlet oxygen generation by this porphyrin.  相似文献   

6.
Magnesium phthalocyanine (MgPc) was covalently attached by four imidazole units to form a novel photosensitizer (PS). The photophysical processes within the dyad PS were explored by steady state and time-resolved fluorescence as well as laser flash photolysis. Although the imidazole units caused a 50% decrease in fluorescence quantum yield and a remarkable shortening of fluorescence lifetime of the MgPc moiety, the triplet yield (Φ(T)) is higher and the triplet lifetime becomes longer. The transient absorption bands for MgPc(?-) were observed, indicating the occurrence of intramolecular photoinduced electron transfer (PET) from imidazole subunits to the lowest excited singlet state (S(1)) of the MgPc moiety. The kinetic and thermodynamic analysis also supports the involvement of PET in S(1) deactivation. The quantum efficiency of photosensitized oxidation of diphenylisobenzofuran (DPBF) by the PS is 0.52. This value is much higher than Φ(T) (0.26), since DPBF is photo-oxidized not only by singlet oxygen (type II reaction, 54%) but also by superoxide anion radical (type I reaction, 46%). The result suggests that the mechanism of photosensitized oxidation could be changed upon the conjugation of a PS to biological molecules, so that the importance of type I reaction is enhanced.  相似文献   

7.
Highly efficient triplet photosensitizers (PSs) have attracted increasing attention in cancer photodynamic therapy where photo-induced reactive oxygen species (ROSs, such as singlet oxygen) are produced via singlet–triplet intersystem crossing (ISC) of the excited photosensitizer to kill cancer cells. However, most PSs exhibit the fatal defect of a generally less-than-1% efficiency of ISC and low yield of ROSs, and this defect strongly impedes their clinical application. In the current work, a new strategy to enhance the ISC and high phototherapy efficiency has been developed, based on the molecular design of a thio-pentamethine cyanine dye (TCy5) as a photosensitizer. The introduction of an electron-withdrawing group at the meso-position of TCy5 could dramatically reduce the singlet–triplet energy gap (ΔEst) value (from 0.63 eV to as low as 0.14 eV), speed up the ISC process (τISC = 1.7 ps), prolong the lifetime of the triplet state (τT = 319 μs) and improve singlet oxygen (1O2) quantum yield to as high as 99%, a value much higher than those of most reported triplet PSs. Further in vitro and in vivo experiments have shown that TCy5-CHO, with its efficient 1O2 generation and good biocompatibility, causes an intense tumor ablation in mice. This provides a new strategy for designing ideal PSs for cancer photo-therapy.

The electron-withdrawing group at the meso-position of Thio-Cy5 could dramatically reduce the singlet–triplet energy gap, and speed up the intersystem crossing process.  相似文献   

8.
Predicting the therapeutic outcome of photodynamic therapy (PDT) requires knowledge of the amount of cytoxic species generated. An implicit approach to assessing PDT efficacy has been proposed where changes in photosensitizer (PS) fluorescence during treatment are used to predict treatment outcome. To investigate this, in vitro experiments were performed in which Mat-LyLu cells were incubated in meta-tetra(hydroxyphenyl)chlorin (mTHPC) and then irradiated with 652 nm light. PS concentration, fluence rate and oxygenation were independently controlled and monitored during the treatment. Fluorescence of mTHPC was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony-formation assay. Singlet oxygen dose was calculated using four different models and was compared with cell survival. For the dose metric based on singlet oxygen-mediated PS photobleaching, a universal relationship between cell survival and singlet oxygen dose was found for all treatment parameters. Analysis of the concentration dependence of bleaching suggests that the lifetime of singlet oxygen within the cell is 0.05-0.25 micros. Generation of about 9 x 10(8) molecules of singlet oxygen per cell reduces the surviving fraction by 1/e.  相似文献   

9.
Photodynamic therapy typically employs photo-triggered photosensitizers to generate reactive oxygen species to destroy cancer cells. However, the therapeutic effect of photodynamic therapy is often limited owing to the ultrashort diffusion distance of reactive oxygen species and easy efflux of photosensitizers. Herein, we design and synthesize a protein-targeted molecular photosensitizer for highly efficient photodynamic therapy. The designed photosensitizer can covalently bind with the sulfhydryl groups of intracellular proteins to achieve the protein targeting. Under irradiated with near infrared laser, the photosensitizer was locally activated, and the produced reactive oxygen species directly destroy intracellular bioactive proteins, causing cell dysfunction and ultimately inducing cell apoptosis. Significantly, the leakage of molecular photosensitizer is effectually avoided due to the protein targeting. In vivo experimental results indicated that the effect of treatment was efficiently enhanced with the protein-targeted strategy. This work can offer new insights for designing protein-based therapeutic drugs.  相似文献   

10.
The first Eu3+ chelate-based phosphorescence probe specific for singlet oxygen has been designed, synthesized and characterized. The probe is highly sensitive, selective and water soluble for time-resolved luminescence detection of singlet oxygen with a detection limit of 2.8 nM.  相似文献   

11.
To date, singlet oxygen ((1)O(2)) luminescence (SOL) detection was predictive of photodynamic therapy (PDT) treatment responses both in vitro and in vivo, but accurate quantification is challenging. In particular, the early and strongest part of the time-resolved signal (500-2000ns) is difficult to separate from confounding sources of luminescence and system noise, and so is normally gated out. However, the signal dynamics change with oxygen depletion during PDT, so that this time gating biases the (1)O(2) measurements. Here, the impact of gating was investigated in detail, determining the rate constants from SOL and direct pO(2) measurements during meso-tetra(hydroxyphenyl)chlorin (mTHPC)-mediated PDT of cells in vitro under well-controlled conditions. With these data as input, numerical simulations were used to examine PDT and SOL dynamics, and the influence of various time gates on cumulative SOL signals. It is shown that gating can underestimate the SOL at early treatment time points by ~40% and underestimate the cumulative SOL signal by 20-25%, representing significant errors. In vitro studies with both mTHPC and aminolevulinic acid-photosensitizer protoporphyrin IX demonstrate that rigorous analysis of SOL signal kinetics is then crucial in order to use SOL as an accurate and quantitative PDT dose metric.  相似文献   

12.
A selective near-infrared fluorescent probe (His-Cy), which features a fast response to (1)O(2) with high sensitivity and selectivity, was designed, synthesized and applied to bioimaging.  相似文献   

13.
14.
Photosensitized generation of singlet oxygen   总被引:4,自引:0,他引:4  
This work gives an overview of what is currently known about the mechanisms of the photosensitized production of singlet oxygen. Quenching of pi pi* excited triplet states by O2 proceeds via internal conversion of excited encounter complexes and exciplexes of sensitizer and O2. Both deactivation channels lead with different efficiencies to singlet oxygen generation. The balance between the deactivation channels depends on the triplet-state energy and oxidation potential of the sensitizer, and on the solvent polarity. A model has been developed that reproduces rate constants and efficiencies of the competing processes quantitatively. Sensitization by excited singlet states is much more complex and hence only qualitative rules could be elaborated, despite serious efforts of many groups. However, the most important deactivation paths of fluorescence quenching by O2 are again directed by excess energies and charge-transfer interactions similar to triplet-state quenching by O2. Finally, two recent developments in photosensitization of singlet oxygen are reviewed: Two-photon sensitizers with particular application potential for photodynamic therapy and fluorescence imaging of biological samples and singlet oxygen sensitization by nanocrystalline porous silicon, a material with very different photophysics compared to molecular sensitizers.  相似文献   

15.
16.
With the ever-growing demand of clean water for the healthy world, water purification has become an urgent global issue. Singlet oxygen (1O2) as unique non-radical derivative of oxygen, possessing unoccupied π* orbital and exhibiting high selectivity towards electron-rich organic pollutants. Nevertheless, most of the approaches suffer from low-efficiency or biotoxicity, which severely restrict their potential applications. Therefore, in this work, we propose a general strategy via photoelectrocatalytic for selectively reducing oxygen to 1O2 with designed carbon bridged carbon nitride (CBCN). This work highlights the important role of synergistic photo-electro-catalytic effect for selectively generating the 1O2 via oxygen reduction pathway, which can be a promising way especially for degrading electron-rich pollutants.  相似文献   

17.
18.
Rate constants of singlet oxygen quenching by glycyrrhetic acid, glycyrrhizic acid, isoliquiritigenin, licurazide,d-glucose, andl-arabinose were determined. An increase in the quenching rate constants by more than an order of magnitude is observed on going from aglycone to the corresponding glycoside.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 57–59, January, 1996.  相似文献   

19.
Singlet oxygen was generated in the gas phase at atmospheric pressure by the method of heterogeneous photosensitization. In vitro exposure of human lung WI-38 fibroblasts to gas-phase singlet oxygen resulted in sister chromatid exchange.  相似文献   

20.
The chemistry of singlet oxygen with a variety of arylphosphines has been studied. Rates of singlet oxygen removal by para-substituted arylphosphines show good correlation with the Hammett σ parameter (ρ=−1.53 in CDCl3), and with the Tolman electronic parameter. The only products for the reactions of these phosphines with singlet oxygen are the corresponding phosphine oxides. Conversely, for ortho-substituted phosphines with electron-donating substituents, there are two products, namely a phosphinate formed by intramolecular insertion and phosphine oxide. Kinetic analyses demonstrate that both products are formed from the same intermediate, and this allows determination of the rate ratios for the competing pathways. Increasing the steric bulk of the phosphine leads to an increase in the amount of insertion product. VT NMR experiments show that peroxidic intermediates can only be detected for very hindered and very electron-rich arylphosphines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号