首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prion-like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau–HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3-O-sulfation (3-O-S) of HS significantly enhances tau binding. In Hs3st1−/− (HS 3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3-O-S HS 12-mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3-O-S binding sites to the microtubule binding repeat 2 (R2) and proline-rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3-O-sulfation. Our work demonstrates that this rare 3-O-sulfation enhances tau–HS binding and likely the transcellular spread of tau, providing a novel target for disease-modifying treatment of AD and other tauopathies.  相似文献   

2.
Achieving selective inhibition of chemokines with structurally well-defined heparan sulfate (HS) oligosaccharides can provide important insights into cancer cell migration and metastasis. However, HS is highly heterogeneous in chemical composition, which limits its therapeutic use. Here, we report the rational design and synthesis of N-unsubstituted (NU) and N-acetylated (NA) heparan sulfate tetrasaccharides that selectively inhibit structurally homologous chemokines. HS analogs were produced by divergent synthesis, where fully protected HS tetrasaccharide precursor was subjected to selective deprotection and regioselectively O-sulfated, and O-phosphorylated to obtain 13 novel HS tetrasaccharides. HS microarray and SPR analysis with a wide range of chemokines revealed the structural significance of sulfation patterns and NU domain in chemokine activities for the first time. Particularly, HT-3,6S-NH revealed selective recognition by CCL2 chemokine. Further systematic interrogation of the role of HT-3,6S-NH in cancer demonstrated an effective blockade of CCL2 and its receptor CCR2 interactions, thereby impairing cancer cell proliferation, migration and invasion, a step towards designing novel drug molecules.  相似文献   

3.
Apolipoprotein E (ApoE)’s ϵ4 alle is the most important genetic risk factor for late onset Alzheimer's Disease (AD). Cell-surface heparan sulfate (HS) is a cofactor for ApoE/LRP1 interaction and the prion-like spread of tau pathology between cells. 3-O-sulfo (3-O-S) modification of HS has been linked to AD through its interaction with tau, and enhanced levels of 3-O-sulfated HS and 3-O-sulfotransferases in the AD brain. In this study, we characterized ApoE/HS interactions in wildtype ApoE3, AD-linked ApoE4, and AD-protective ApoE2 and ApoE3-Christchurch. Glycan microarray and SPR assays revealed that all ApoE isoforms recognized 3-O-S. NMR titration localized ApoE/3-O-S binding to the vicinity of the canonical HS binding motif. In cells, the knockout of HS3ST1-a major 3-O sulfotransferase-reduced cell surface binding and uptake of ApoE. 3-O-S is thus recognized by both tau and ApoE, suggesting that the interplay between 3-O-sulfated HS, tau and ApoE isoforms may modulate AD risk.  相似文献   

4.
Prion‐like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau–HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3‐O‐sulfation (3‐O‐S) of HS significantly enhances tau binding. In Hs3st1?/? (HS 3‐O‐sulfotransferase‐1 knockout) cells, reduced 3‐O‐S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3‐O‐S HS 12‐mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3‐O‐S binding sites to the microtubule binding repeat 2 (R2) and proline‐rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3‐O‐sulfation. Our work demonstrates that this rare 3‐O‐sulfation enhances tau–HS binding and likely the transcellular spread of tau, providing a novel target for disease‐modifying treatment of AD and other tauopathies.  相似文献   

5.
Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.  相似文献   

6.
Glycosaminoglycans are a class of linear, highly negatively charged, O-linked polysaccharides that are involved in many (patho)physiological processes. In vitro experimental investigations of such processes typically involve porcine-derived heparan sulfate (HS). Structural information about human, particularly organ-specific heparan sulfate, and how it compares with HS from other organisms, is very limited. In this study, heparan sulfate was isolated from human lung tissues derived from five donors and was characterized for their overall size distribution and disaccharide composition. The expression profiles of proteoglycans and HS-modifying enzymes was quantified in order to identify the major core proteins for HS. In addition, the binding affinities of human HS to two chemokines—CXCL8 and CCL2—were investigated, which represent important inflammatory mediators in lung pathologies. Our data revealed that syndecans are the predominant proteoglycan class in human lungs and that the disaccharide composition varies among individuals according to sex, age, and health stage (one of the donor lungs was accidentally discovered to contain a solid tumor). The compositional difference of the five human lung HS preparations affected chemokine binding affinities to various degrees, indicating selective immune cell responses depending on the relative chemokine–glycan affinities. This represents important new insights that could be translated into novel therapeutic concepts for individually treating lung immunological disorders via HS targets.  相似文献   

7.
Among dissociation methods, negative electron transfer dissociation (NETD) has been proven the most useful for glycosaminoglycan (GAG) sequencing because it produces informative fragmentation, a low degree of sulfate losses, high sensitivity, and translatability to multiple instrument types. The challenge, however, is to distinguish positional sulfation. In particular, NETD has been reported to fail to differentiate 4-O- versus 6-O-sulfation in chondroitin sulfate decasaccharide. This raised the concern of whether NETD is able to differentiate the rare 3-O-sulfation from predominant 6-O-sulfation in heparan sulfate (HS) oligosaccharides. Here, we report that NETD generates highly informative spectra that differentiate sites of O-sulfation on glucosamine residues, enabling structural characterizations of synthetic HS isomers containing 3-O-sulfation. Further, lyase-resistant 3-O-sulfated tetrasaccharides from natural sources were successfully sequenced. Notably, for all of the oligosaccharides in this study, the successful sequencing is based on NETD tandem mass spectra of commonly observed deprotonated precursor ions without derivatization or metal cation adduction, simplifying the experimental workflow and data interpretation. These results demonstrate the potential of NETD as a sensitive analytical tool for detailed, high-throughput structural analysis of highly sulfated GAGs.
Graphical Abstract
  相似文献   

8.
Surfen, bis-2-methyl-4-amino-quinolyl-6-carbamide, was previously reported as a small molecule antagonist of heparan sulfate (HS), a key cell-surface glycosaminoglycan found on all mammalian cells. To generate structure–activity relationships, a series of rationally designed surfen analogs was synthesized, where its dimeric structure, exocyclic amines, and urea linker region were modified to probe the role of each moiety in recognizing HS. An in vitro assay monitoring inhibition of fibroblast growth factor 2 binding to wild-type CHO cells was utilized to quantify interactions with cell surface HS. The dimeric molecular structure of surfen and its aminoquinoline ring systems was essential for its interaction with HS, and certain dimeric analogs displayed higher inhibitory potency than surfen and were also shown to block downstream FGF signaling in mouse embryonic fibroblast cells. These molecules were also able to antagonize other HS–protein interactions including the binding of soluble RAGE to HS. Importantly, selected molecules were shown to neutralize heparin and other heparinoids, including the synthetic pentasaccharide fondaparinux, in a factor Xa chromogenic assay and in vivo in mice. These results suggest that small molecule antagonists of heparan sulfate and heparin can be of therapeutic potential for the treatment of disorders involving glycosaminoglycan–protein interactions.  相似文献   

9.
Active myeloperoxidase (MPO) targeting is an emerging strategy to achieve intratumoral accumulation and retention of nanomedicines. However, the targeting efficiency still suffers from insufficient MPO and H2O2 contents in the tumor inflammatory microenvironment. Herein, a novel nanotheranostic, designated as FePCP-5, was constructed to elevate intratumoral MPO and H2O2 levels for enhanced MPO targeting, thus improving cancer theranostics. FePCP-5 was prepared by co-loading MPO-responsive ligand (D5-HT) and cargos (chlorin e6 and cisplatin) onto Fe(III)-polydopamine nanoparticles. On photoirradiation, FePCP-5 can not only induce cytotoxicity but aggravate inflammation to increase MPO concentrations. Meanwhile, the increased MPO can oxidate D5-HT with the help of intrinsic H2O2 for inducing nanotheranostic aggregation. In addition to chemotherapeutic effect, cisplatin can elevate H2O2 to further enhance the targeting efficiency. Consequently, FePCP-5 could inhibit tumor growth and upregulate MPO and H2O2 levels, which in turn enhanced the intratumoral accumulation and theranostic effect via a positive feedback loop. In vivo fluorescence/photoacoustic imaging experiments confirmed that such synergistic photo/chemo/chemodynamic therapy could significantly enhance intratumoral nanotheranostic accumulation, leading to pronounced tumor inhibition (~96%). Taken together, this strategy showed promising potential in designing nanomedicines through self-enhanced targeting for efficient drug delivery and synergetic cancer therapy.  相似文献   

10.
To expand the repertoire of our benzyl-protection strategy for solid-phase glycopeptide synthesis, an O-sulfated glycopeptide was chosen as the synthetic target. Trisaccharyl serine derivatives (Galβ1-4-GlcNAcβ1-2-Manα1-3-Ser) carrying (4-methoxyphenyl)methyl (MPM) groups at either 3-O or 6-O of the Gal residue were prepared through three stereoselective glycosylations. Cleavage of MPM followed by reaction with Me3N·SO3 efficiently afforded 3-O- and 6-O-sulfo-glycoserines, respectively. A preliminary debenzylation study using the sulfated glycoserines revealed that the sulfate groups persisted under ‘low-acidity TfOH’ conditions, when using a limited amount of TfOH and extending the reaction period. The 3-O-sulfo-glycoserine was then introduced into an icosapeptide modeled after an α-dystroglycan fragment by a combination of automated and manual solid-phase peptide synthesis procedures. The synthesized glycopeptide was successfully debenzylated by the low-acidity TfOH cocktail with slight damage to the sulfate functionality.  相似文献   

11.
《中国化学快报》2020,31(5):1178-1182
Cancer therapy with nanoscale drug formulations has made significant progress in the past few decades. However, the selective accumulation and release of therapeutic agents in the lesion sites are still great challenges. To this end, we developed a cRGD-decorated pH-responsive polyion complex (PIC) micelle for intracellular targeted delivery of doxorubicin (DOX) to upregulate tumor inhibition and reduce toxicity. The PIC micelle was self-assembled via the electrostatic interaction between the positively charged cRGD-modified poly(ethylene glycol)-block-poly(l-lysine) and the anionic acid-sensitive 2,3-dimethylmaleic anhydride-modified doxorubicin (DAD). The decoration of cRGD enhanced the cell internalization of PIC micelle through the specific recognition of αvβ3 integrin on the membrane of tumor cells. The active DOX was released under intracellular acidic microenvironment after endocytosis following the decomposition of DAD. Moreover, the targeted PIC micelle exhibited enhanced inhibition efficacies toward hepatoma in vitro and in vivo compared with the insensitive controls. The smart multifunctional micelle provides a promising platform for target intracellular delivery of therapeutic agent in cancer therapy.  相似文献   

12.
Bone metastasis is a type of metastatic tumors that involves the spreads of malignant tumor cells into skeleton, and its diagnosis and treatment remain a big challenge due to the unique tumor microenvironment. We herein develop osteoclast and tumor cell dual-targeting biomimetic semiconducting polymer nanocomposites (SPFeNOC) for amplified theranostics of bone metastasis. SPFeNOC contain semiconducting polymer and iron oxide (Fe3O4) nanoparticles inside core and surface camouflaged hybrid membrane of cancer cells and osteoclasts. The hybrid membrane camouflage enables their targeting to both metastatic tumor cells and osteoclasts in bone metastasis through homologous targeting mechanism, thus achieving an enhanced nanoparticle accumulation in tumors. The semiconducting polymer mediates near-infrared (NIR) fluorescence imaging and sonodynamic therapy (SDT), and Fe3O4 nanoparticles are used for magnetic resonance (MR) imaging and chemodynamic therapy (CDT). Because both cancer cells and osteoclasts are killed synchronously via the combinational action of SDT and CDT, the vicious cycle in bone metastasis is broken to realize high antitumor efficacy. Therefore, 4T1 breast cancer-based bone metastasis can be effectively detected and cured by using SPFeNOC as dual-targeting theranostic nanoagents. This study provides an unusual biomimetic nanoplatform that simultaneously targets osteoclasts and cancer cells for amplified theranostics of bone metastasis.  相似文献   

13.
Different chromatographic methods including reversed-phase HPLC led to the isolation and purification of three O-methylated flavonoids; 5,4’-dihydroxy-3,6,7-tri-O-methyl flavone (penduletin) (1), 5,3’-dihydroxy-3,6,7,4’,5’-penta-O-methyl flavone (2), and 5-hydroxy-3,6,7,3’,4’,5’-hexa-O-methyl flavone (3) from Rhamnus disperma roots. Additionlly, four flavonoid glycosides; kampferol 7-O-α-L-rhamnopyranoside (4), isorhamnetin-3-O-β-D-glucopyranoside (5), quercetin 7-O-α-L-rhamnopyranoside (6), and kampferol 3, 7-di-O-α-L-rhamnopyranoside (7) along with benzyl-O-β-D-glucopyranoside (8) were successfully isolated. Complete structure characterization of these compounds was assigned based on NMR spectroscopic data, MS analyses, and comparison with the literature. The O-methyl protons and carbons of the three O-methylated flavonoids (1–3) were unambiguously assigned based on 2D NMR data. The occurrence of compounds 1, 4, 5, and 8 in Rhamnus disperma is was reported here for the first time. Compound 3 was acetylated at 5-OH position to give 5-O-acetyl-3,6,7,3’,4’,5’-hexa-O-methyl flavone (9). Compound 1 exhibited the highest cytotoxic activity against MCF 7, A2780, and HT29 cancer cell lines with IC50 values at 2.17 µM, 0.53 µM, and 2.16 µM, respectively, and was 2–9 folds more selective against tested cancer cell lines compared to the normal human fetal lung fibroblasts (MRC5). It also doubled MCF 7 apoptotic populations and caused G1 cell cycle arrest. The acetylated compound 9 exhibited cytotoxic activity against MCF 7 and HT29 cancer cell lines with IC50 values at 2.19 µM and 3.18 µM, respectively, and was 6–8 folds more cytotoxic to tested cancer cell lines compared to the MRC5 cells.  相似文献   

14.
Current cancer targeting relying on specific biological interaction between the cell surface antigen and respective antibody or its analogue has proven to be effective in the treatment of different cancers; however, this strategy has its own limitations, such as the heterogeneity of cancer cells and immunogenicity of the biomacromolecule binding ligands. Bioorthogonal chemical conjugation has emerged as an attractive alternative to biological interaction for in vivo cancer targeting. Here, we report an in vivo cancer targeting strategy mediated by bioorthogonal oxime ligation. An oxyamine group, the artificial target, is introduced onto 4T1 murine breast cancer cells through liposome delivery and fusion. Poly(ethylene glycol)-polylactide (PEG-PLA) nanoparticles (NPs) are surface-functionalized with aldehyde groups as targeting ligands. The improved in vivo cancer targeting of PEG-PLA NPs is achieved through specific and efficient chemical reaction between the oxyamine and aldehyde groups.  相似文献   

15.
Three novel pyrazolo-[4,3-e][1,2,4]triazolopyrimidine derivatives (1, 2, and 3) were designed, synthesized, and evaluated for their in vitro biological activity. All three compounds exhibited different levels of cytotoxicity against cervical and breast cancer cell lines. However, compound 1 showed the best antiproliferative activity against all tested tumor cell lines, including HCC1937 and HeLa cells, which express high levels of wild-type epidermal growth factor receptor (EGFR). Western blot analyses demonstrated that compound 1 inhibited the activation of EGFR, protein kinase B (Akt), and extracellular signal-regulated kinase (Erk)1/2 in breast and cervical cancer cells at concentrations of 7 and 11 µM, respectively. The results from docking experiments with EGFR suggested the binding of compound 1 at the ATP binding site of EGFR. Furthermore, the crystal structure of compound 3 (7-(4-bromophenyl)-9-(pyridin-4-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine) was determined by single crystal X-ray analysis. Our work represents a promising starting point for the development of a new series of compounds targeting EGFR.  相似文献   

16.
Photodynamic therapy(PDT) has been gaining popularity in both scientific research and clinic applications due to its non-invasiveness and spatiotemporal targeting properties. Nevertheless, the local hypoxic microenvironment in tumor tissue impedes PDT universality. To overcome this drawback, a 2-pyridonebearing BODIPY photosensitizer was synthesized rationally and introduced to polyethyleneglycol-bpoly(aspartic acid) to form a photosensitizer-1O2 generation, storage/release...  相似文献   

17.
A selective and sensitive liquid chromatography coupled with triple stage quadruple tandem mass spectrometry (HPLC/TSQ-MS/MS) was developed and validated for simultaneous quantification of calycosin-7-O-β-d-glycoside (CCSG), formononetin-7-O-β-d-glycoside (Ononin) and (6R,10R)-9,10-dimethoxypterocarpan-3-O-β-d-glycoside (DPG) in rabbit plasma. Plasma samples were extracted with solid-phase extraction (SPE), separated on an Inertsil ODS-3 column and detected by tandem mass spectrometry with electrospray ionization (ESI) interface in positive selective reaction monitoring (SRM) mode. 3,7,8-Trimethoxy-xanthone-1-O-primaverose was used as internal standard (IS) for quantitative measurement. For each analyte, one major product ion was chosen and used for screening of it. Calibration curves were generated over the range of 2-1000 ng mL−1 with the correlation coefficients greater than 0.99 by using a weighted (1/χ) least squares linear regression. The method had the lower limit quantification of 0.15, 0.21 and 0.19 for CCSG, Ononin and DPG, respectively, with precision less than 20%. The intra- and inter-day precisions ranged from 2.48 to 6.38% and 4.81 to 11.78% (R.S.D.%), respectively. This assay is suitable for determining the above three trace glycosides in rabbit plasma simultaneously and thus investigating the pharmacokinetics of glycosides from Astragalus mongholicus extract in rabbits.  相似文献   

18.
Intrinsic enzyme-mimic activity of inorganic nanoparticles has been widely used for nanozymatic anticancer and antibacterial treatment. However, the relatively low peroxidase-mimic activity (PMA) and catalse-mimic activity (CMA) of nanozymes in tumor microenvironment has hampered their potential application in the cancer therapy. Therefore, in this study, we aimed to fabricate platinum (Pt) nanozymes dispersed on the surface of iron oxide (Fe3O4) nanosphere that, in addition to boosting the PMA and CMA, resulted in the formation of a pH-sensitive nano-platform for drug delivery in breast cancer therapy. After development of Fe3O4 nanospheres containing Pt nanozymes and loading 5-fluorouracil (abbreviated as: Fe3O4/Pt-FLU@PEG nanospheres), the physicochemical properties of the nanospheres were examined by electron microscopy, dynamic light scattering, zeta potential, X-ray diffraction, thermogravimetric, BET surface, and PMA/CMA analyses. Then, the cytotoxicity of the Fe3O4/Pt-FLU@PEG nanospheres against 4T1 cells was investigated by the cell counting kit-8 assay and flow cytometry. Also, the anticancer effect of fabricated nanoplatform was assessed in mouse bearing 4T1 cancer tumors, in vivo. The results showed that the Fe3O4/Pt-FLU@PEG nanospheres provide a platform for optimal FLU loading, continuous pH-sensitive drug release, and potential PMA and CMA to increase the level of ROS and O2, respectively. Cytotoxicity outputs showed that the Fe3O4/Pt-FLU@PEG nanospheres mitigate the proliferation of 4T1 cancer cells mediated by apoptosis and intracellular generation of reactive oxygen species (ROS). Furthermore, in vivo assays indicated a significant reduction in tumor size and overcoming tumor hypoxia. Overall, we believe that the developed nanospheres with dual enzyme-mimic activity and pH-sensitive drug delivery can be used for ROS/chemotherapy double-modality antitumor therapy.  相似文献   

19.
A supramolecular nanovehicle (denoted as SNV) was fabricated by encapsulating zinc phthalocyanine (ZnPc) and doxorubicin (DOX) into a copolymer (PVP-b-PAA-g-FA), so as to achieve systematic and synergistic chemotherapy-photodynamic therapy (PDT), targeted tumor imaging and therapy. The sophisticated copolymer designed in this work can load the PDT photosensitizer (ZnPc) and chemotherapy drug (DOX) simultaneously, which exhibits an excellent performance in chemotherapy-PDT targeted cancer and tumor therapy for both in vitro studies performed with HepG2 cells and in vivo tests with mice. This work provides a new drug formulation with a chemotherapy-PDT synergistic effect by virtue of the supramolecular material design, which possesses the advantages of an ultra-low drug dosage and highly-efficient in vivo targeted tumor imaging/therapy.  相似文献   

20.
Heparin‐binding hemagglutinin (HBHA) is a 199 amino acid virulence factor at the envelope of Mycobacterium tuberculosis that contributes to latent tuberculosis. The binding of HBHA to respiratory epithelial cells, which leads to extrapulmonary dissemination of the pathogen, is mediated by cell‐surface heparan sulfate (HS). We report the structural characterization of the HBHA/HS complex by NMR spectroscopy. To develop a model for the molecular recognition, the first chemically synthesized uniformly 13C‐ and 15N‐labeled HS octasaccharide and a uniformly 13C‐ and 15N‐labeled form of HBHA were prepared. Residues 180–195 at the C‐terminal region of HBHA show large chemical shift perturbation upon association with the octasaccharide. Molecular dynamics simulations conforming to the multidimensional NMR data revealed key electrostatic and even hydrophobic interactions between the binding partners that may aid in the development of agents targeting the binding event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号