首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of three 1:2 inclusion compounds that consist of host mol­ecule 2,5‐di­phenyl­hydro­quinone (C18H14O2) and the guest mol­ecules 2‐pyridone (C5H5NO), 1,3‐di­phenyl‐2‐propen‐1‐one (chalcone, C15H12O) and 1‐(4‐meth­oxy­phenyl)‐3‐phenyl‐2‐propen‐1‐one (4′‐methoxy­chal­cone, C16H14O2) were determined in order to study the ability of guest mol­ecules in inclusion compounds to undergo photoreaction. All of the crystals were found to be photoresistant. The three inclusion compounds crystallize in triclinic space group . In each case, the host/guest ratio is 1:2, with the host mol­ecules occupying crystallographic centers of symmetry and the guest mol­ecules occupying general positions. The guest mol­ecules in each of the inclusion compounds are linked to the host mol­ecules by hydrogen bonds. In the inclusion compound where the guest mol­ecule is pyridone, the host mol­ecule is disordered so that the hydroxy groups are distributed between two different sites, with occupancies of 0.738 (3) and 0.262 (3). The pyridone mol­ecules form dimers via N—H⋯O hydrogen bonds.  相似文献   

2.
Crystal structure analysis of the title compound, C13H12ClNO, reveals three crystallographically independent mol­ecules in the asymmetric unit. The main conformational difference between these mol­ecules is the orientation of the phenyl rings with respect to the pyrrole rings. The coplanar arrangement of the aldehyde groups attached to the pyrrole rings influences the pyrrole‐ring geometry. The C2—C3 and N1—C5 bonds are noticeably longer than the C4—C5 and N1—C2 bonds. Two independent mol­ecules of the title compound form dimers via intermolecular C—H⃛O hydrogen bonds [DA = 3.400 (3) Å and D—H⃛A = 157°]. The perpendicular orientation of the phenyl and pyrrole rings of one independent mol­ecule and its symmetry‐related mol­ecule allows C—H⃛π interactions, with an H⃛centroid distance of 2.85 Å and a C—H⃛π angle of 155°. The distances between the H atom and the pyrrole‐ring atoms indicate that the C—H bond points towards one of the bonds in the pyrrole ring.  相似文献   

3.
2,2‐Di­methyl‐5‐[3‐(4‐methyl­phenyl)‐2‐propenyl­idene]‐1,3‐di­ox­ane‐4,6‐dione, C16H16O4, crystallizes in the triclinic space group , with two mol­ecules in the asymmetric unit. These mol­ecules and a centrosymmetrically related pair, linked together by weak C—H?O hydrogen bonds, form a tetramer. 5‐[3‐(4‐Chloro­phenyl)‐2‐propenyl­idene]‐2,2‐di­methyl‐1,3‐dioxane‐4,6‐dione, C15H13ClO4, also crystallizes in the triclinic space group , with one mol­ecule in the asymmetric unit. Centrosymmetrically related mol­ecules are linked together by weak C—H?O hydrogen bonds to form dimers which are further linked by yet another pair of centrosymmetrically related C—H?O hydrogen bonds to form a tube which runs parallel to the a axis.  相似文献   

4.
In the title compound, 2C10H15N5O4·0.5H2O, there are two independent mol­ecules of the pyrimidinyl­isoleucine in general positions and a water mol­ecule lying on a twofold rotation axis. The bond lengths within the organic moieties demonstrate significant polarization of the electronic structure. Each of the organic mol­ecules participates in 12 intermolecular hydrogen bonds, of O—H?O and N—H?O types, while the water mol­ecule acts as a double donor and as a double acceptor of O—H?O hydrogen bonds. The organic components are linked by the hydrogen bonds into a single three‐dimensional framework, reinforced by the water mol­ecules.  相似文献   

5.
The title tetracyclic diterpenoid, 10,13,16,17‐tetra­hydroxy‐9‐methyl‐15‐oxo‐20‐norkaurane‐18,10‐carbolactone hemihydrate, C20H28O6·0.5H2O, is a plant metabolite from Parinari sprucei, part of the Venezuelan Amazon flora. The asymmetric unit consists of two nearly identical mol­ecules of the diterpenoid and one mol­ecule of water. Some of the geometric parameters reflect steric strain in the mol­ecule. The extended structure is characterized by hydrogen bonds and weaker hydrogen‐mediated interactions, which involve all of the hydroxy groups and propagate in sheets that coincide with the (002) family of planes. The water mol­ecule acts as a double hydrogen‐bond donor and single acceptor and thus plays a critical role in the pattern of intermolecular interactions.  相似文献   

6.
The morpholine ring of the title dione, C13H15NO3, shows a boat conformation that is distorted towards a twist‐boat, with the boat ends being the two Csp3 atoms of the ring. The benzyl substituent is in the favoured `exo' position. In the mono­thione derivative, (±)‐6‐benzyl‐3,3‐di­methyl‐5‐thioxo­morpholin‐2‐one, C13H15NO2S, this ring has a much flatter conformation that is midway between a boat and an envelope, with the di­methyl end being almost planar. The orientation of the benzyl group is `endo'. The di­thione derivative, (±)‐6‐benzyl‐3,3‐di­methyl­morpholine‐2,5‐di­thione, C13H15N­OS2, has two symmetry‐independent mol­ecules, which show different puckering of the morpholine ring. One mol­ecule has a flattened envelope conformation distorted towards a screw‐boat, while the conformation in the other mol­ecule is similar to that in the mono­thione derivative. Intermolecular hydrogen bonds link the mol­ecules in the three compounds, respectively, into centrosymmetric dimers, infinite chains, and dimers made up of one of each of the symmetry‐independent mol­ecules.  相似文献   

7.
The whole mol­ecule of the title compound, C19H14N4O2, is essentially planar, with a highly conjugated π system. In the crystal, the mol­ecules are packed as chains along the [011] direction connected by O—H?N intermolecular hydrogen bonds.  相似文献   

8.
The asymmetric unit of the title compound, C25H30FN3O·0.5CH3OH, contains four symmetry‐independent steroid and two methanol mol­ecules. The conformations of the independent steroid mol­ecules are very similar. Intermolecular O—H⋯O hydrogen bonds create two independent chains, each of which links two of the independent steroid mol­ecules plus one methanol mol­ecule via a co‐operative O—H⋯O—H⋯O—H pattern. Intermolecular C—H⋯O and C—H⋯F interactions are also observed.  相似文献   

9.
The title compound, C19H20O6, crystallizes in the centrosymmetric space group P21/c with one mol­ecule in the asymmetric unit. The mol­ecule is approximately planar and the dihedral angle between the phenyl rings is 11.0 (1)°. The H atoms of the central propenone group are trans. There is an intramolecular O—H⃛O hydrogen bond and the mol­ecules are crosslinked by four intermolecular C—H⃛O hydrogen bonds, producing a three‐dimensional network.  相似文献   

10.
The title compound, C14H21NO, has two mol­ecules in the asymmetric unit. Each mol­ecule forms hydrogen‐bonded dimers about inversion centers via O—H?N hydrogen bonds between oxime groups. The N—O distances in the oxime groups are 1.4160 (15) and 1.4131 (14) Å.  相似文献   

11.
The asymmetric unit of the title compound, C11H5D16N2O2·0.33H2O, is formed by three crystallographically independent piperidin‐1‐yloxyl mol­ecules and a mol­ecule of water. The mol­ecules are crosslinked by nine hydrogen bonds into layers parallel with the ac plane. The water mol­ecule contributes to the stability of the low‐symmetry arrangement by four hydrogen bonds.  相似文献   

12.
The mol­ecule of the title compound, 2,3‐F2‐4‐(CHO)C6H2B(OH)2 or C7H5BF2O3, contains a formyl group coplanar with the benzene ring. The boronic acid group is twisted with respect to the benzene ring plane. The mol­ecules are organized into infinite chains via inter­molecular O—H⋯O hydrogen bonds. These chains are additionally connected via strong O—H⋯O hydrogen bonds, producing a folded layer structure perpendicular to the a axis. These layers are paired due to B⋯F inter­actions.  相似文献   

13.
The asymmetric unit of the title compound, C22H31N3O4·H2O, incorporates one water mol­ecule, which is hydrogen bonded to the 3‐oxo O atom of the indolizidinone system. The two rings of the peptidomimetic mol­ecule are trans‐fused, with the six‐membered ring having a slightly distorted half‐chair conformation and the five‐membered ring having a perfect envelope conformation. The structure is stabilized by intermolecular O—H?O interactions between the water and adjacent peptide mol­ecules, and by N—H?O interactions between the peptide mol­ecules, which link the mol­ecules into infinite chains.  相似文献   

14.
The title compound, C11H8N2O, has two crystallographically independent mol­ecules in the crystal. Each mol­ecule is basically planar except for the O atom. The two N atoms in the mol­ecule show different behaviour as hydrogen‐bonding acceptors. One of them is involved in intermolecular O—H?N hydrogen bonds which stabilize the crystal packing.  相似文献   

15.
In the crystal structure of C15H20O2, mol­ecules are associated by intermolecular hydrogen bonds between the hydroxy function and a keto group [O?O 2.770 (2) Å], forming chains along the [100] direction in the crystal. Both six‐membered rings in the decalin unit adopt envelope conformations; one section of the mol­ecule, encompassing the extended conjugation of a C=C double bond with an enone functionality [C=C—C=O = 175.6 (2)° and C=C—C=C = 176.6 (2)°], is flat, whilst the rest of the mol­ecule is folded relative to the constrained part. The stereochemistry was determined from the R‐(–)‐carvone starting material.  相似文献   

16.
Crystals of the title racemic compound, C11H13NO2, consist of two types of mol­ecules (conformers); one mol­ecule has an exocyclic OH group in an equatorial position and the other has this group in an axial position. Consequently, the hydrogen‐bond schemes for the two mol­ecules are different. The mol­ecules with equatorial OH groups create infinite parallel chains (formed by the same enantio­mer), connected by centrosymmetric dimers of mol­ecules (of mixed enantio­mers), both with axial OH groups. Possible inter­conversion of the conformers and the flexibility of the mol­ecule were studied by means of different MP2 and density functional theory (DFT) methods. The optimization of the structure by the DFT method confirmed the types of the hydrogen bonds.  相似文献   

17.
The crystal structure of the title compound, [Cu2(C12H7­N2O)2]·H2O, shows that this dinuclear complex has shorter Cu—N, Cu—O and Cu—Cu distances within the coordination sphere than similar reported complexes. The complex mol­ecule is located on a centre of symmetry and the water mol­ecule is on a twofold axis of the space group C2/c. The discrete complex mol­ecules are extended into a two‐dimensional supramolecular array viaπ–π stacking interactions, intermolecular Cu⋯Cu interactions and C—H⋯O hydrogen bonds.  相似文献   

18.
The title compound, C18H13NO3, exists as a keto­amino tautomer implying a fairly short N—H?O intramolecular hydrogen bond between the 2‐naphthalenone and amino moieties [N?O 2.531 (3) Å] which is enhanced by the π‐electron delocalization effect. The naphthald­imine and 3‐carboxy­phenyl fragments are inclined at an angle of 4.41 (7)°, so the mol­ecule is almost planar. The mol­ecules are connected by intermolecular O—H?O hydrogen bonds between the carboxy and keto O atoms, forming infinite chains around the twofold screw axes parallel to b .  相似文献   

19.
Two new polymorph forms, (Ia) and (Ib), of the title compound, C14H17N3S, and its solvate with aceto­nitrile, C14H17N3S·0.25C2H3N, (Ic), have been investigated. Crystals of the two polymorphs were grown from different solvents, viz. ethanol and N,N‐di­methyl­form­amide, respectively. The polymorphs have different orientations of the thio­amide group relative to the CN substituent, with s‐cis and s‐trans geometry of the C=C—C=S diene fragment, respectively. Compound (Ic) contains two independent mol­ecules, A and B, with s‐cis geometry, and the solvate mol­ecule lies on a twofold axis. The core of each mol­ecule is slightly non‐planar; the dihedral angles between the conjugated C=C—CN linkage and the phenyl ring, and between this linkage and the thio­amide group are 13.4 (2) and 12.0 (2)° in (Ia), 14.0 (2) and 18.2 (2)° in (Ib), 2.3 (3) and 12.7 (4)° in molecule A of (Ic), and 23.2 (3) and 8.1 (4)° in molecule B of (Ic). As a result of strong conjugation between donor and acceptor parts, the substituted phenyl rings have noticeable quinoid character. In (Ib), there exists a very strong intramolecular steric interaction (H⋯H = 1.95 Å) between the bridging and thio­amide parts of the mol­ecule, which makes such a form less stable. In the crystal structure of (Ia), intermolecular N—H⋯N and N—H⋯S hydrogen bonds link mol­ecules into infinite tapes along the [10] direction. In (Ib), such intermolecular hydrogen bonds link mol­ecules into infinite (101) planes. In (Ic), intermolecular N—H⋯N hydrogen bonds link mol­ecules A and B into dimers, which are connected via N—H⋯S hydrogen bonds and form infinite chains along the c direction.  相似文献   

20.
In the title compound, [Cu2I2(C11H16N4)2], each of the two crystallographically equivalent Cu atoms is tetrahedrally coordinated by two N atoms from one 1,1′‐methyl­ene­bis(3,5‐di­methyl‐1H‐pyrazole) ligand and two bridging iodide anions. The mol­ecule has a crystallographic center of symmetry located at the mid‐point of the Cu·Cu line. One H atom of the CH2 group of the 1,1′‐methyl­ene­bis(3,5‐di­methyl‐1H‐pyrazole) ligand interacts with an iodide ion in an adjacent mol­ecule to afford pairwise intermolecular C—H·I contacts, thereby forming chains of mol­ecules running along the [101] direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号