首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphologies of phase-separated monolayer films prepared from two different binary mixtures of perfluorocarbons and hydrocarbons have been examined and compared, for the first time, at the solid-air and liquid-air interfaces. Films were comprised of binary mixtures of arachidic acid (C(19)H(39)COOH) with perfluorotetradecanoic acid (C(13)F(27)COOH) and of palmitic acid (C(15)H(31)COOH) with perfluorooctadecanoic acid (C(17)F(35)COOH). For both mixed systems, Langmuir Blodgett films on mica substrates consisted of polygonal domains of one surfactant dispersed in a continuous matrix of the other (arachidic acid in perfluorotetradecanoic acid or perfluorooctadecanoic acid in palmitic acid, respectively), consistent with previous reports. Real-time imaging of the air-water interface via Brewster angle microscopy revealed that comparable film morphology was present at the air-water interface and the solid-air interface over a wide range of surface pressures, and that for the arachidic acid-based mixture, domain growth dynamics at the air-water interface is consistent with that inferred from sequential "static" atomic force microscope images collected at the solid-air interface.  相似文献   

2.
The nitrogen reduction reaction (NRR) has become an ideal alternative to the Haber‐Bosch process, as NRR possesses, among others, the advantage of operating under ambient conditions and saving energy consumption. The key to efficient NRR is to find a suitable electrocatalyst, which helps to break the strong N≡N bond and improves the reaction selectivity. Molybdenum disulfide (MoS2) as an emerging layered two‐dimensional material has attracted a mass of attention in various fields. In this minireview, we summarize the optimization strategies of MoS2‐based catalysts which have been developed to improve the weak NRR activity of primitive MoS2. Some theoretical predictions have also been summarized, which can provide direction for optimizing NRR activity of future MoS2‐based materials. Finally, an outlook about the optimization of MoS2‐based catalysts used in electrochemical N2 fixation are given.  相似文献   

3.
The interactions between milk proteins, beta-Lactoglobulin (beta-Lg) and bovine serum albumin (BSA), at the air-water interface have been evaluated. The surface pressure (pi), molecular area (a) isotherms were obtained by compression of the monolayers at different pH and temperature. In the method used to calculate the interactions, the desorbed segments of the proteins into the aqueous subphase have been considered. Earlier, the desorbed segments have been estimated from the compressibility factor, z, as a function of the surface pressure (virial state equation). The main conclusion from this study is that for biopolymers it is not possible to apply only the mixing thermodynamics to evaluate the intermolecular forces. It is necessary to include the desorption phenomenon. From these results, we can conclude that the main interaction between both proteins is of electrostatic character.  相似文献   

4.
Two‐dimensional layered transition metal dichalcogenides (TMDs) have attracted great interest owing to their unique properties and a wide array of potential applications. However, due to their inert nature, pristine TMDs are very challenging to functionalize. We demonstrate a general route to functionalize exfoliated 2H‐MoS2 with cysteine. Critically, MoS2 was found to be facilitating the oxidation of the thiol cysteine to the disulfide cystine during functionalization. The resulting cystine was physisorbed on MoS2 rather than coordinated as a thiol (cysteine) filling S‐vacancies in the 2H‐MoS2 surface, as originally conceived. These observations were found to be true for other organic thiols and indeed other TMDs. Our findings suggest that functionalization of two‐dimensional MoS2 using organic thiols may not yield covalently or datively tethered functionalities, rather, in this instance, they yield physisorbed disulfides that are easily removed.  相似文献   

5.
Optimizing interfacial contacts and thus electron transfer phenomena in heterogeneous electrocatalysts is an effective approach for enhancing electrocatalytic performance. Herein, we successfully synthesized ultrafine β-Mo2C nanoparticles confined within hollow capsules of nitrogen-doped porous carbon (β-Mo2C@NPCC) and found that the surface layer of molybdenum atoms was further oxidized to a single Mo–O surface layer, thus producing intimate O–Mo–C interfaces. An arsenal of complementary technologies, including XPS, atomic-resolution HAADF-STEM, and XAS analysis clearly reveals the existence of O–Mo–C interfaces for these surface-engineered ultrafine nanostructures. The β-Mo2C@NPCC electrocatalyst exhibited excellent electrocatalytic activity for the hydrogen evolution reaction (HER) in water. Theoretical studies indicate that the highly accessible ultrathin O–Mo–C interfaces serving as the active sites are crucial to the HER performance and underpinned the outstanding electrocatalytic performance of β-Mo2C@NPCC. This proof-of-concept study opens a new avenue for the fabrication of highly efficient catalysts for HER and other applications, whilst further demonstrating the importance of exposed interfaces and interfacial contacts in efficient electrocatalysis.

Ultrafine β-Mo2C nanostructures encapsulated in N-doped carbon capsules featuring O–Mo–C interfaces as the active sites for HER have been unveiled.  相似文献   

6.
Monolayers of molybdenum disulfide MoS2 are considered to be prospective materials for nanoelectronics and various catalytic processes. Since in certain conditions they undergo 1T ? 2H phase transitions, studying these phase changes is an urgent task. We present a DFT research of these transitions to show that they can proceed as a solid‐state reaction. Two transition states were discovered with energy barriers 1.03 and 1.40 eV. Sulfur atoms in the transition states are shown to be displaced relative to molybdenum atoms so that a tendency of one structural modification to transform into the other modification is seen. This kind of displacements agrees with electron microscopy data reported earlier. The energy parameters indicate that 1T → 2H reactions are exothermic for both transition states and can possibly proceed in a self‐sustained manner when initially activated by some external energy impact. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The catalytic synthesis of NH3 from the thermodynamically challenging N2 reduction reaction under mild conditions is currently a significant problem for scientists. Accordingly, herein, we report the development of a nitrogenase-inspired inorganic-based chalcogenide system for the efficient electrochemical conversion of N2 to NH3, which is comprised of the basic structure of [Fe–S2–Mo]. This material showed high activity of 8.7 mgNH3 mgFe−1 h−1 (24 μgNH3 cm−2 h−1) with an excellent faradaic efficiency of 27% for the conversion of N2 to NH3 in aqueous medium. It was demonstrated that the Fe1 single atom on [Fe–S2–Mo] under the optimal negative potential favors the reduction of N2 to NH3 over the competitive proton reduction to H2. Operando X-ray absorption and simulations combined with theoretical DFT calculations provided the first and important insights on the particular electron-mediating and catalytic roles of the [Fe–S2–Mo] motifs and Fe1, respectively, on this two-dimensional (2D) molecular layer slab.

A nitrogenase-inspired inorganic-based chalcogenide system containing [Fe–S2–Mo] motif is developed for the efficient electrochemical conversion of N2 to NH3.  相似文献   

8.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

9.
The performance of nano‐sensor based on MoS2 nanosheet mixed with Au particle is tested based electrochemical test involving cyclic voltammogram and impedance spectroscopy, where the FeIII(CN)63?/FeII(CN)64? and dopamine (DA) are chosen as research object to verify the role of layer number of MoS2 nanosheet and the temperature. The electrochemical test shows the Au nanoparticle would improve the electron exchange reaction occurring on the electrode. In the solution of FeIII(CN)63?/FeII(CN)64?, the electrode reaction follows , where increasing the layer number of MoS2 nanosheet would restrict the reaction. In the DA system, the reaction of occurs on the electrode and increasing the layer number of MoS2 nanosheet would facilitate the reaction. The difference as mentioned above is assigned to the energy level shift originated from variance of layer number of MoS2 nanosheet and the changing of reaction mechanism. In addition, temperature would mainly facilitate the kinetics of electron exchange reaction, which is assigned to the diffusion acceleration of DA molecule. Simultaneously, the desorption process of reactant in the electrolyte would enhance. The role of layer number of MoS2 nanosheet and the temperature is clarified with the thermodynamic and kinetic properties of electron exchange reaction based on MoS2 nanosheet, which would improve the understanding of nano‐sensor based on MoS2 nanosheet.  相似文献   

10.
Amyloid fibrils are supramolecular homopolymers of proteins that play important roles in biological functions and disease. These objects have received an exponential increase in attention during the last few decades, due to their role in the aetiology of a range of severe disorders, most notably some of a neurodegenerative nature. While an overwhelming number of experimental studies exist that investigate how, and how fast, amyloid fibrils form and how their formation can be inhibited, a much more limited body of experimental work attempts to answer the question as to why these types of structures form (i.e. the thermodynamic driving force) and how stable they actually are. In this review, I attempt to give an overview of the types of experiments that have been performed to-date to answer these questions, and to summarise our current understanding of amyloid thermodynamics.

The thermodynamics of amyloid formation has largely been neglected compared to kinetic studies. In this review, the current state of the experimental exploration of amyloid thermodynamics is presented and important open questions are highlighted.  相似文献   

11.
The surface potential of adsorbed monolayers of cholesteryl-pullulan (CHP) derivatives has been determined by the ionizing differential electrode method. It has been found that this potential is highly dependent on the degree of cholesterol grafted onto pullulan, and that the native polysaccharide displays neither surface activity nor surface potential. As the disordered structure of the non-ionic polysaccharide unit generates a random orientation of intrinsic dipole moments, it has been considered that its contribution to the measured surface potential is rather small, compared to the cholesteryl group dipolar contribution. The surface densities of cholesteryl groups of adsorbed CHP molecules have been determined from the relationship between the surface potential and the surface density of spread cholesterol molecules. The assessment of these quantities was essential, as the determination of the surface tension data for the CHP derivatives with low cholesteryl content (CHP45−0.6 and CHP50−0.9) was difficult to achieve (Part I of this work [B. Deme´, V. Rosilio and A. Baszkin, Colloids Surfaces B: Biointerfaces, 4 (1995) 357]). These results complement those from the surface tension measurements, and confirm that in the surface layer of the adsorbed polysaccharide the ordered cholesteryl groups are oriented towards the air phase and the disordered polysaccharide is immersed in the aqueous subphase. Proposed models for semi-organized adsorbed CHP layers are discussed.  相似文献   

12.
The formation of mixed monolayers of hydridospherosilsesquioxane clusters (H(8)Si(8)O(12)) and alkylsilanes (H(2n+1)C(n)SiH(3)) on Au has been investigated using X-ray photoelectron and reflection-absorption infrared spectroscopies and scanning tunneling microscopy. All of the techniques indicate the displacement of the majority of the siloxane clusters from the surface in favor of the alkylsilane.  相似文献   

13.
14.
Mixed monolayers of octanoic acid (OA) and 16-mercaptohexadecanoic acid (MHDA) were adsorbed to nanocrystalline TiO(2) films from mixed solutions in tetrahydrofuran. For a range of solution compositions, the mole fraction of MHDA within the mixed monolayers (chi (MHDA,surf)) exceeded that of the coadsorption solution. In addition, chi (MHDA,surf) increased with time, while the sum of the surface coverages of MHDA and OA remained constant. To account for these effects, we propose a mechanism involving disulfide formation between the terminal thiol groups of surface-adsorbed MHDA molecules. Disulfide formation leads to an increase in the surface adduct formation constant ( K(ad)) of dimeric MHDA, causing the gradual displacement of OA from the surface. The mechanism is supported by spectroscopic evidence and desorption kinetics. These are the first examples of mixed monolayers that undergo time-dependent compositional changes as a result of covalent bond formation between surfactants. Our findings illustrate that dimerization and other intermolecular interactions between surfactants may dramatically influence the composition and terminal functionalization of a wide range of mixed monolayer systems.  相似文献   

15.
Heterogeneous Fenton-like processes are very promising methods of treating organic pollutants through the generation of reactive oxygen containing radicals. Herein, we report novel 0D–1D hybrid nanoarchitectonics (necklace-like structures) consisting of FeCo@N–C yolk–shell nanoreactors as advanced catalysts for Fenton-like reactions. Each FeCo@N–C unit possesses a yolk–shell structure like a nanoreactor, which can accelerate the diffusion of reactive oxygen species and guard the active sites of FeCo. Furthermore, all the nanoreactors are threaded along carbon fibers, providing a highway for electron transport. FeCo@N–C nano-necklaces thereby exhibit excellent performance for pollutant removal via activation of peroxymonosulfate, achieving 100% bisphenol A (k = 0.8308 min−1) degradation in 10 min with good cycling stability. The experiments and density-functional theory calculations reveal that FeCo dual sites are beneficial for activation of O–O, which is crucial for enhancing Fenton-like processes.

Novel 0D–1D hybrid nanoarchitectonics consisting of FeCo@N–C yolk–shell nanoreactors are developed for Fenton-like reaction. With the multilevel advantages of this design, FeCo@N–C nano-necklaces exhibit excellent performance for BPA removal.

Advanced oxidation processes (AOPs) are one of the most promising strategies to eliminate organic contaminants, sustainably generating reactive oxygen species (ROS) to ideally destroy all non-biodegradable, recalcitrant, toxic, or membrane-permeable organic impurities.1–4 Among these AOPs, sulfate radical (SO4˙)-based Fenton-like processes have gained increasing attention as a water treatment strategy because of the strong oxidation potential of SO4˙ (3.1 V vs. normal hydrogen electrode) at wider pH ranges. SO4˙ is mainly produced by physical or chemical methods for activation of persulfate salts, such as peroxymonosulfate (PMS) and persulfate.5–9 Over the past two decades, heterogeneous catalysis has emerged as the most effective approach to water treatment, with much effort dedicated to developing better catalysts, including transition metal-based and carbonaceous materials.10,11 Unfortunately, most metal-based catalysts suffer from leaching of toxic metal ions, which can thwart their practical application,12,13 and although carbonaceous catalysts produce no secondary pollution, their cycle performance is always depressed.14 There is therefore an urgent need to find robust catalysts with adequate activity and stability for Fenton-like processes.To achieve superior performance, an ideal Fenton-like catalyst should contain oxidants with favorably reactive centers for cleavage of peroxyl bonds (O–O), have structure optimized for target pollutant attraction, and have chainmail to protect the vulnerable active sites for long periods.15–17 Recent studies have demonstrated Co–N–C active sites prefer to activate the O–O of PMS.18 Furthermore, introducing Fe-doping into the Co–N–C system not only suppresses Co2+ leaching, but also modulates the pyrrolic-N content, which is the adsorption site for capture of bisphenol A (BPA).19 We previously discovered that Co@C yolk–shell nanoreactors could enhance the catalytic activity because of the confinement effect in the nano-spaces between the core and shell, while the carbon shell acted like a chainmail protecting the Co active sites, keeping them highly reactive after five cycles.20,21Combining different kinds of materials to generate novel hybrid material interfaces can enable the creation of new kinds of chemical and physical functionalities that do not currently exist. However, one cannot simply mix these materials in an uncontrolled manner, because the ensemble of interfaces created by random mixing tends to favour thermodynamically stable interfaces that are functionally less active. Therefore, to prepare new materials with high functionality, it is necessary to carefully control the hybridization of components in interfacial regions with nanometric or atomic precision. By further hybridization of different components e.g., zero to one dimension (0D–1D) hybrid structures, we can prepare the structure to increase not only the specific surface area but also the interfacial region between different materials.In this work, we report novel 0D–1D hybrid nanoarchitectonics (necklace-like structures) consisting of FeCo@N–C yolk–shell nanoreactors as a PMS activator for Fenton-like processes. This catalyst has multilevel advantages: (i) each FeCo@N–C unit is a well-formed yolk–shell nanoreactor, which can guarantee sufficient contact of reactants and active sites, as well as defend them for good durability; (ii) all single nanoreactors are threaded along the carbon fibers, providing a highway for electron transport; and (iii) all the carbon fibers constructed into a thin film with macroscopic structure, which overcomes the complex recyclability of powder catalysts. Benefiting from favorable composition and unique structure, the FeCo@N–C catalyst delivers excellent performance for BPA removal via activation of PMS accompanied with good stability.The synthesis processes of necklace-like nanoarchitecture containing FeCo@N–C yolk–shell nanoreactors are illustrated in Fig. 1a. First, uniform Fe–Co Prussian blue analogue (Fe–Co PBA) nanocubes with an average size of 800–900 nm (Fig. 1b) are encapsulated in polyacrylonitrile (PAN) nanofibers by electrospinning. The obtained necklace-like FeCo PBA–PAN fibers (Fig. 1c) are then pyrolyzed at 800 °C in N2 atmosphere to produce FeCo@N–C nano-necklaces. The scanning electron microscopy (SEM) image (Fig. 1d) of the FeCo@N–C shows this necklace-like morphology with its large aspect ratio, with the FeCo@N–C particles strung along the PAN-derived carbon fibers. A broken particle (Fig. 1e) shows that the FeCo@N–C has a yolk–shell architecture, which is also identified by transmission electron microscopy (TEM). Fig. 1f and g show the well-defined space between the inner yolk and outer shell, which is attributed to the volume shrinkage of the original Fe–Co PBAs. During pyrolysis, Fe–Co PBA is reduced to FeCo (inner yolk) and PAN is carbonized (outer carbon shell), resulting in the unique necklace-like nanoarchitecture.22–24 The high-resolution TEM in Fig. 1h shows a lattice fringe of 0.20 nm, which matches well with the (110) plane of FeCo alloy.25 The scanning transmission electron microscopy (STEM) image (Fig. 1i) and corresponding elemental map (Fig. 1j) indicate that FeCo nanocrystals are well distributed in the inner core with some small FeCo nanocrystals located on external carbon shells. Furthermore, the control samples of Fe@N–C and Co@N–C nano-necklaces, prepared by only replacing the Fe–Co PBA nanocubes with Fe–Fe PB and Co–Co PBA (Fig. S1), also demonstrate the versatility of this synthetic strategy. The formation of hierarchical porous structure, beneficial to the PMS transportation on the surface of catalysts, could be determined by N2 adsorption–desorption isotherms and corresponding pore volume analysis (Fig. S2 and Table S1).Open in a separate windowFig. 1(a) Preparation of FeCo@N–C necklace-like nanoarchitecture. SEM images of (b) Fe–Co PBA cubic particles and (c) the electrospun FeCo PBA–PAN fibers. (d and e) SEM, (f and g) TEM, and (h) high-resolution TEM images of FeCo@N–C nano-necklaces. (i) STEM and (j) the corresponding elemental mappings of C, N, Fe, and Co.The X-ray diffraction patterns of the as-prepared products are depicted in Fig. S3, with one prominent diffraction peak centered at 44.8° corresponding to the (110) lattice plane of FeCo alloy. All the products also have a characteristic signal at 26°, implying that graphite carbon is formed during pyrolysis. Raman spectroscopy further analyzed the crystal structures and defects of the FeCo@N–C nano-necklaces (Fig. S4), where peaks found at 1349 cm−1 and 1585 cm−1 index the disordered (D band) and graphitic carbon (G band), respectively.26 X-ray photoelectron spectroscopy investigated the composition and valence band spectra of FeCo@N–C nano-necklaces. The survey spectrum (Fig. S5a) reveals the presence of Fe (1.4%), Co (1.2%), C (86.4%), N (4.5%), and O (6.5%) in the composite. The high-resolution N 1s spectrum (Fig. S5b) exhibits broad peaks at 398.1, 401.1, and 407.4 eV, corresponding to the pyridinic-N, graphitic-N, and σ* excitation of C–N, respectively.27 The high-resolution Fe 2p spectrum (Fig. S5c) shows a broad peak at 707.4 eV, attributed to Fe0. Similarly, the 777.5 eV peak observed in the Co 2p spectrum (Fig. S5d) corresponds to Co0, implying that FeCo dual sites have formed.28 The oxidation state of these sites was investigated by 57Fe Mössbauer spectroscopy, which found a sextet in the Mössbauer spectrum of the FeCo@N–C nano-necklaces attributed to FeCo dual sites (Fig. 2a and Table S2).29 The coordination environment of the FeCo dual sites was also verified by X-ray absorption fine structure (XAFS) spectroscopy. Fig. 2b shows that the X-ray absorption near-edge structure (XANES) spectra of the Fe K-edge, which demonstrates a similar near-edge structure to that of Fe foil, illustrating that the main valence state of Fe in FeCo@N–C nano-necklaces is Fe0. Furthermore, the extended-XAFS (EXAFS) spectra (Fig. 2c) displays a peak at 1.7 Å, which is ascribed to the Fe–N bond, and a remarkable peak at approximately 2.25 Å corresponding to the metal–metal band.10,30 The Co K-edge and EXAFS spectra (Fig. S6) also confirm the presence of Co–N and the metal–metal band. These results provide a potential structure of the FeCo dual sites in the FeCo@N–C nano-necklaces, as illustrated in Fig. 2d.Open in a separate windowFig. 2(a) 57Fe Mössbauer spectra of FeCo@N–C nano-necklaces at 298 K. (b) Fe K-edge XANES spectra of FeCo@N–C nano-necklaces and Fe foil. (c) Corresponding Fourier transformed k3-weighted of the EXAFS spectra for Fe K-edge. (d) Possible structure of the FeCo dual sites.This dual-metal center and necklace-like structure may be beneficial to enhance catalytic performance. Fig. 3a shows the Fenton-like performance for BPA degradation compared to Fe@N–C nano-necklaces, Co@N–C nano-necklaces, and FeCo@N–C particles (Fe–Co PBA directly carbonized without electrospinning). Here, the FeCo@N–C nano-necklaces display a higher catalytic performance, with BPA completely removed in 7 min. To clearly compare their catalytic behavior, the kinetics of BPA degradation was fitted by the first-order reaction. As shown in Fig. 3b, FeCo@N–C nano-necklaces exhibit the highest apparent rate constant (k = 0.83 min−1), which is approximately 6.4, 2.6, and 1.2 times that of FeCo@N–C particles, Fe@N–C nano-necklaces, and Co@N–C nano-necklaces, respectively. The significantly enhanced performance of FeCo@N–C nano-necklaces suggests that the FeCo dual sites and necklace-like nanoarchitecture are crucial. Furthermore, the concentration of BPA and PMS in the solution is higher than that in yolk–shell nanoreactor, resulting a concentration gradient which helps to accelerate the diffusion rates of reactants (Fig. 3c).31,32 For these nano-necklaces, the carbon shell acts like a chainmail protecting the FeCo active sites from attack by molecules and ions, and all the nanoreactors are threaded along the carbon fibers, providing a highway for electron transport, which is important for SO4˙ generation (SO4˙ production as eqn, HSO5 + e → SO4˙ + OH). Electrochemical impedance spectroscopy further confirms the good conductivity of the FeCo@N–C nano-necklaces (Fig. 3d). In addition, the concentration of metal-ion leaching and cycling performance (Fig. 3e and f) reveal the high reusability of FeCo@N–C nano-necklaces, with 95% BPA removal in 20 min after five cycles, which is also proved by the SEM and TEM characterization (Fig. S7). The effect of other reaction parameters on the BPA degradation, such as pH, reaction temperature, PMS or catalysts dosage, and common anions, were investigated in detail (Fig. S8–S11). All the results demonstrate that FeCo@N–C nano-necklaces deliver a better performance for PMS catalysis. In addition, the turnover frequency (TOF) value of FeCo@N–C nano-necklaces is 5.5 min−1 for BPA degradation, which is higher than many previously reported catalysts (detailed catalytic performance comparison as shown in Table S3).Open in a separate windowFig. 3(a) BPA degradation efficiency in different reaction systems and (b) the corresponding reaction rate constants. (c) Schematic illustration of PMS activation in FeCo@N–C nano-necklaces. (d) Nyquist plots of the catalysts. (e) The metal leaching in different reaction systems. (f) Cycling performance of FeCo@N–C nano-necklaces for BPA removal. Reaction conditions: [catalyst] = 0.15 g L−1, [BPA] = 20 mg L−1, [PMS] = 0.5 g L−1, T = 298 K, and initial pH = 7.0.To examine the enhanced catalytic activity, radical quenching experiments were conducted. As shown in Fig. 4a, when NaN3 is added to the reaction solution as a scavenger for 1O2, there is no significant reduction of BPA decomposition, implying that non-radicals are not the dominant reactive species. By comparison, when tert-butanol (TBA) (radical scavenger for ˙OH) is added, there is a slight (2.8%) decrease in BPA removal. However, if methanol (radical scavenger for SO4˙ and ˙OH) is added, the efficiency of BPA degradation declines by up to 59.2%, indicating that the major radicals generated from the PMS activation are SO4˙;33 the presence of these radicals is also verified by electron paramagnetic resonance (EPR) (Fig. 4b). Furthermore, the significant inhibition ratio can be observed when KI (quencher for the surface) is added, demonstrating that BPA degradation is mainly attributed to reactions with SO4˙, which is produced by a surface catalytic process.34Open in a separate windowFig. 4(a) Effects of the radical scavengers on BPA degradation. (b) EPR spectra of SO4˙ and ˙OH. (c) The energy profiles of PMS on FeCo@N–C nano-necklaces surface. (d) Optimized configurations of PMS adsorbed on FeCo@N–C nano-necklaces.Density-functional theory was applied to calculate the surface energy of PMS activation at FeCo dual sites (Fig. 4c, d and S12). The dissociation barrier of PMS into SO4˙ and OH is −2.25 eV, which is much lower than that on an Fe or Co single site, suggesting that cleavage of O–O bonds of PMS occurs more easily on FeCo dual sites. This is because FeCo dual sites provide two anchoring sites for the dissociated O atoms, leading to more efficient activation of O–O. The FeCo@N–C nano-necklaces can reduce the energy barrier of O–O bond breaking, which results in high activity for PMS activation and thus high productivity of SO4˙.  相似文献   

16.
A broad range of the boundary value problems of the kinetic theory of gases and gas mixtures is considered based on kinetic theory and non-equilibrium thermodynamics. The interrelation of the kinetic theory and non-equilibrium thermodynamics is discussed. The balance equations at the interface are obtained for the case of the boundary layers with peculiar properties. Procedures for deriving the boundary conditions for slightly rarefied gas mixtures are outlined. The problems of calculating slip coefficients are discussed. The specificity of the kinetic effects in the boundary conditions is shown. A set of general relations related to gas mixture flows in capillaries is deduced. The possibility of non-equilibrium kinetic effects in the form of a paradoxical distribution of non-equilibrium temperature is shown. Methods of non-equilibrium thermodynamics are used to obtain the phenomenological equations describing the thermophoresis and diffusiophoresis of particles and cross phenomena. The growth and evaporation of droplets is considered based on kinetic theory and non-equilibrium thermodynamics.  相似文献   

17.
The membrane states of the alpha-series ganglioside GM1alpha in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed monolayers and hybrid bilayers were investigated using atomic force microscopy (AFM). The AFM image for the GM1alpha/DOPC/DPPC ternary monolayers showed the formation of GM1alpha-raft in the DOPC matrix. As increase of the surface pressure, GM1alpha are condensed in DPPC-rich domains; long and slender GM1alpha-rafts are separated from the DPPC-rich domains into the DOPC matrix. The GM1alpha/DOPC/DPPC ternary monolayers were deposited on mica coated with the first layer (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine: DPPE) using the Langmuir-Schaeffer technique. The AFM image for the hybrid bilayers showed that same molecules were heterogeneously concentrated according to increase of the surface pressure to form GM1alpha-raft, DPPC-rich domain and DOPC matrix, being in agreement with the observation on the monolayer experiment. The found phenomenon implies that a binding of lectin to GM1alpha causes the increase of the surface pressure, the localization of GM1alpha and the succeeding formation of the raft as a first step of a specific signal transduction.  相似文献   

18.
Adsorption of surfactin, a powerful lipopeptide biosurfactant, at the air-liquid interface has been investigated in this article. The adsorption took place from buffered solutions containing relatively high concentrations of surfactin co- and counterions. Dynamic surface tension measurements were used to follow the self-assembly of surfactin at the interface until equilibrium surface pressure Π e is reached at a given surfactin concentration (C s). Gibbs adsorption equation in conjunction with the Langmuir adsorption isotherm was used to predict surfactin surface excess as a function of the biosurfactant concentration up to the critical micelle concentration (CMC). The predicted surface excess at saturation (Γ ) is 1.05?±?0.05 μmol m?2, corresponding to an area per molecule (A ) of 159?±?8 Å2. The adsorption equilibrium constant (K?=?(1.5?±?0.6)?×?106 M‐?1) was also estimated from the nonlinear regression of Π e???C s data in region B of the Π e???ln?C s plot. The value of K suggests that surfactin has strong affinity for the interface, which is in line with its known high surface activity. Gibbs elasticity (E G) of the interfacial surfactin monolayers, which is an important thermodynamic property, was also predicted at different surfactin concentrations. The limiting value (at the CMC) of E G was found to be 183 mN m?1, which is comparable to those reported in the literature for similar systems. The findings reported in this work reveal that the surface tension measurements coupled with appropriate theoretical analysis could provide useful information comparable to those obtained using highly sophisticated techniques.  相似文献   

19.
Molybdenum disulfide (MoS2), as a kind of adsorbent, can selectively remove Pb2+ from water. However, agglomeration and fewer active S sites are the two factors that spoil the adsorption performance of MoS2. In order to solve these problems, a new type of adsorbent: 1T/2H mixed-phase MoS2 (D-MoS2)/montmorillonite composites (D-Mt) are proposed via the one-step hydrothermal method, associated with filling cations. Among them, S defects are intentionally introduced to promote the conversion of the 2H phase in MoS2 into 1T phase, contributing by adding an excessive amount of CH4N2S and using the hydrothermal method. Moreover, owing to filling with Na+, D-MoS2 is uniformly dispersed driven by electrostatic force. Consequently, D-Mt has a large density of edge active sites, contributing to a greatly improved adsorption capacity with 175.57 mg/g, which can be attributed to the different growth directions of MoS2 nanosheets and its unique defect structure as well as the inhibited masking effect on –OH that existing on the edge of montmorillonite. Additionally, the adsorption mechanism is confirmed via theoretical calculations, which suggests that there are electron transfers between O 2p, S 3p and Pb 6p, indicating that Pb2+ could be adsorbed via three paths, including interlayer ion exchange, –OH on the edge as well as S defects in D-Mt.  相似文献   

20.
Molybdenum disulfide (MoS2) has been regarded as a favorable photocatalytic co‐catalyst and efficient hydrogen evolution reaction (HER) electrocatalyst alternative to expensive noble‐metals catalysts, owing to earth‐abundance, proper band gap, high surface area, and fast electron transfer ability. In order to achieve a higher catalytic efficiency, defects strategies such as phase engineering and vacancy introduction are considered as promising methods for natural 2H‐MoS2 to increase its active sites and promote electron transfer rate. In this study, we report a new two‐step defect engineering process to generate vacancies‐rich hybrid‐phase MoS2 and to introduce Ru particles at the same time, which includes hydrothermal reaction and a subsequent hydrogen reduction. Compositional and structural properties of the synthesized defects‐rich MoS2 are investigated by XRD, XPS, XAFS and Raman measurements, and the electrochemical hydrogen evolution reaction performance, as well as photocatalytic hydrogen evolution performance in the ammonia borane dehydrogenation are evaluated. Both catalytic activities are boosted with the increase of defects concentrations in MoS2, which ascertains that the defects engineering is a promising route to promote catalytic performance of MoS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号