首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HCR represents a powerful tool for amplification in DNA-based circuitry and sensing applications, yet requires the use of long DNA sequences to grant hairpin metastability. Here we describe a minimal HCR system based on peptide nucleic acids (PNAs). A system comprising a 5-mer stem and 5-mer loop/toehold hairpins was found to be suitable to achieve rapid amplification. These hairpins were shown to yield >10-fold amplification in 2 h and be suitable for the detection of a cancer biomarker on live cells. The use of γ-peg-modified PNA was found to be beneficial.

A minimal peptide nucleic acid (PNA) HCR system based on a 5-mer stem and 5-mer loop/toehold hairpins was developed. The system was applied to the detection of a cancer biomarker on the surface of living cells.  相似文献   

2.
Introduction of artificial metal–ligand base pairs can enrich the structural diversity and functional controllability of nucleic acids. In this work, we revealed a novel approach by placing a ligand-type nucleoside as an independent toehold to control DNA strand-displacement reactions based on metal–ligand complexation. This metal-mediated artificial base pair could initiate strand invasion similar to the natural toehold DNA, but exhibited flexible controllability to manipulate the dynamics of strand displacement that was only governed by its intrinsic coordination properties. External factors that influence the intrinsic properties of metal–ligand complexation, including metal species, metal concentrations and pH conditions, could be utilized to regulate the strand dynamics. Reversible control of DNA strand-displacement reactions was also achieved through combination of the metal-mediated artificial base pair with the conventional toehold-mediated strand exchange by cyclical treatments of the metal ion and the chelating reagent. Unlike previous studies of embedded metal-mediated base pairs within natural base pairs, this metal–ligand complexation is not integrated into the nucleic acid structure, but functions as an independent toehold to regulate strand displacement, which would open a new door for the development of versatile dynamic DNA nanotechnologies.

This metal-mediated artificial base pair can function as an independent toehold based on metal–ligand coordination and exhibit flexible and reversible controllability to manipulate the dynamics of strand displacement.  相似文献   

3.
Drug delivery vectors for nucleic acid therapeutics (NATs) face significant barriers for translation into the clinic. Spherical nucleic acids (SNAs) – nanoparticles with an exterior shell made up of DNA strands and a hydrophobic interior – have recently shown great potential as vehicles to improve the biodistribution and efficacy of NATs. To date, SNA design has not taken advantage of the powerful chemical modifications available to NATs. Here, we modify SNAs with 2′-deoxy-2′-fluoro-d-arabinonucleic acid (FANA-SNA), and show increased stability, enhanced gene silencing potency and unaided uptake (gymnosis) as compared to free FANA. By varying the spacer region between the nucleic acid strand and the attached hydrophobic polymer, we show that a cleavable DNA based spacer is essential for maximum activity. This design feature will be important when implementing functionalized nucleic acids into nanostructures for gene silencing. The modularity of the FANA-SNA was demonstrated by silencing two different targets. Transfection-free delivery was superior for the modified SNA compared to the free FANA oligonucleotide.

Optimizing FANA modified spherical nucleic acids (FANA-SNAs) for highly efficient delivery of nucleic acid therapeutics.  相似文献   

4.
Herein we report an amplification system of helical excess triggered by nucleic acid hybridization for the first time. It is usually impossible to prepare achiral nanostructures composed of nucleic acids because of their intrinsic chirality. We used serinol nucleic acid (SNA) oligomers for the preparation of achiral nanowires because SNA oligomers with symmetrical sequences are achiral. Nanowire formation was confirmed by atomic force microscopy and size exclusion chromatography. When a chiral nucleic acid with a sequence complementary to SNA was added to the nanostructure, helicity was induced and a strong circular dichroism signal was observed. The SNA nanowire could amplify the helicity of chiral nucleic acids through nucleobase stacks. The SNA nanostructures have potential for use as platforms to detect chiral biomolecules under aqueous conditions because SNA can be readily functionalized and is water-soluble.

Herein we report an amplification system of helical excess triggered by nucleic acid hybridization for the first time.  相似文献   

5.
Oligonucleotide-templated reactions are frequently exploited for target detection in biosensors and for the construction of DNA-based materials and probes in nanotechnology. However, the translation of the specifically used template chemistry from solution to surfaces, with the final aim of achieving highly selective high-throughput systems, has been difficult to reach and therefore, poorly explored. Here, we show the first example of a visible light-triggered templated ligation on a surface, employing furan-modified peptide nucleic acids (PNAs). Tailored photo-oxidation of the pro-reactive furan moiety is ensured by the simultaneous introduction of a weak photosensitizer as well as a nucleophilic moiety in the reacting PNA strand. This allows one to ensure a localized production of singlet oxygen for furan activation, which is not affected by probe dilution or reducing conditions. Simple white light irradiation in combination with target-induced proximity between reactive functionalities upon recognition of a short 22mer DNA or RNA sequence that functions as a template, allows sensitive detection of nucleic acid targets in a 96 well plate format.

Pinpoint production of singlet oxygen was exploited for a self-contained light-triggered activation of a pro-reactive furan moiety, allowing selective and templated surface modification by recognition of short 22mer oligonucleotides.  相似文献   

6.
7.
Herein, we describe an isothermal proximity CRISPR Cas12a assay that harnesses the target-induced indiscrimitive single-stranded DNase activity of Cas12a for the quantitative profiling of gene expression at the mRNA level and detection of proteins with high sensitivity and specificity. The target recognition is achieved through proximity binding rather than recognition by CRISPR RNA (crRNA), which allows for flexible assay design. A binding-induced primer extension reaction is used to generate a predesigned CRISPR-targetable sequence as a barcode for further signal amplification. Through this dual amplification protocol, we were able to detect as low as 1 fM target nucleic acid and 100 fM target protein isothermally. The practical applicability of this assay was successfully demonstrated for the temporal profiling of interleukin-6 gene expression during allergen-mediated mast cell activation.

Herein, we develop an isothermal proximity CRISPR Cas12a assay that harnesses the target-induced collateral cleavage activity of Cas12a for the quantitative profiling of gene expression and detection of proteins with high sensitivity and specificity.  相似文献   

8.
Highly sensitive digital nucleic acid techniques are of great significance for the prevention and control of epidemic diseases. Here we report the development of multiplexed droplet loop-mediated isothermal amplification (multiplexed dLAMP) with scorpion-shaped probes (SPs) and fluorescence microscopic counting for simultaneous quantification of multiple targets. A set of target-specific fluorescence-activable SPs are designed, which allows establishment of a novel multiplexed LAMP strategy for simultaneous detection of multiple cDNA targets. The digital multiplexed LAMP assay is thus developed by implementing the LAMP reaction using a droplet microfluidic chip coupled to a droplet counting microwell chip. The droplet counting system allows rapid and accurate counting of the numbers of total droplets and the positive droplets by collecting multi-color fluorescence images of the droplets in a microwell. The multiplexed dLAMP assay was successfully demonstrated for the quantification of HCV and HIV cDNA with high precision and detection limits as low as 4 copies per reaction. We also verified its potential for simultaneous digital assay of HCV and HIV RNA in clinical plasma samples. This multiplexed dLAMP technique can afford a useful platform for highly sensitive and specific detection of nucleic acids of viruses and other pathogens, enabling rapid diagnosis and prevention of infectious diseases.

The development of multiplexed dLAMP with scorpion-shaped probes and fluorescence microscopic counting affords simultaneous digital quantification of multiple virus RNAs.  相似文献   

9.
Rapid and accurate diagnosis of COVID-19 plays an essential role in the current epidemic prevention and control. Despite the promise of nucleic acid and antibody tests, there is still a great challenge to reduce the misdiagnosis, especially for asymptomatic individuals. Here we report a generalizable method for highly specific and ultrasensitive detection of serum COVID-19-associated antigens based on an aptamer-assisted proximity ligation assay. The sensor is based on binding two aptamer probes to the same protein target that brings the ligation DNA region into close proximity, thereby initiating ligation-dependent qPCR amplification. Using this system, serum nucleocapsid protein has been detected quantitatively by converting protein recognition into a detectable qPCR signal using a simple, homogeneous and fast detection workflow in ∼2 hours. In addition, this system has also been transformed into a universal platform for measuring specific interactions between spike S1 and its receptor ACE2, and more importantly demonstrated the feasibility for screening and investigation of potential neutralizing aptamers. Since in vitro selection can obtain aptamers selective for many COVID-19-associated antigens, the method demonstrated here will serve as an important tool for the diagnosis and therapeutics of COVID-19.

A versatile aptamer-assisted proximity ligation system improves diagnosis of COVID-19, and allows the evaluation of potential neutralizing aptamers.  相似文献   

10.
DNA nanowalkers moving progressively along a prescribed DNA track are useful tools in biosensing, molecular theranostics and biosynthesis. However, stochastic DNA nanowalkers that can perform in living cells have been largely unexplored. We report the development of a novel stochastic bipedal DNA walker that, for the first time, realizes direct intracellular base excision repair (BER) fluorescence activation imaging. In our design, the bipedal walker DNA was generated by BER-related human apurinic/apyrimidinic endonuclease 1 (APE1)-mediated cleavage of DNA sequences at an abasic site in the intracellular environment, and it autonomously travelled on spherical nucleic acid (SNA) surfaces via catalyzed hairpin assembly (CHA). Our nanomachine outperforms the conventional single leg-based DNA walker with an improved sensitivity, kinetics and walking steps. Moreover, in contrast to the single leg-based DNA walker, the bipedal DNA walker is capable of monitoring the fluorescence signal of reduced APE1 activity, thus indicating amplified intracellular imaging. This bipedal DNA-propelled DNA walker presents a simple and modular amplification mechanism for intracellular biomarkers of interest, providing an invaluable platform for low-abundance biomarker discovery leading to the accurate identification and effective treatment of cancers.

The developed DNA bipedal walker represents improved sensitivity, kinetics and walking steps for intracellular fluorescence imaging of base-excision repairing.  相似文献   

11.
12.
Biological samples such as blood, urine, cerebrospinal fluid and saliva contain a large variety of proteins, nucleic acids, and small molecules. These molecules can serve as potential biomarkers of disease and therefore, it is desirable to simultaneously detect multiple biomarkers in one sample. Current detection techniques suffer from various limitations including low analytical sensitivity and complex sample processing. In this work, we present an ultrasensitive method for simultaneous detection of small molecules, proteins and microRNAs using single molecule arrays (Simoa). Dye-encoded beads modified with specific capture probes were used to quantify each analyte. Multiplex competitive Simoa assays were established for simultaneous detection of cortisol and prostaglandin E2. In addition, competitive and sandwich immunoassays were combined with a direct nucleic acid hybridization assay for simultaneous detection of cortisol, interleukin 6 and microRNA 141. The multi-analyte Simoa assay shows high sensitivity and specificity, which provides a powerful tool for the analysis of many different samples.

The first example of multiplexed detection of proteins, nucleic acids, and small molecules using single molecule measurement methodology.  相似文献   

13.
A visible-light-induced palladium-catalyzed Dowd–Beckwith ring expansion/C–C bond formation cascade is described. A range of six to nine-membered β-alkenylated cyclic ketones possessing a quaternary carbon center were accessed under mild conditions. Besides styrenes, the electron-rich alkenes such as silyl enol ethers and enamides were also compatible, providing the desired β-alkylated cyclic ketones in moderate to good yields.

An intermolecular Dowd–Beckwith ring expansion/C–C bond formation is achieved through light-induced palladium catalysis. Not only styrenes but also the electron-rich alkenes such as silyl enol ethers and enamides were also compatible in this reaction.  相似文献   

14.
The base-catalyzed isomerization of simple aryl halides is presented and utilized to achieve the 4-selective etherification, hydroxylation and amination of 3-bromopyridines. Mechanistic studies support isomerization of 3-bromopyridines to 4-bromopyridines proceeds via pyridyne intermediates and that 4-substitution selectivity is driven by a facile aromatic substitution reaction. Useful features of a tandem aryl halide isomerization/selective interception approach to aromatic functionalization are demonstrated. Example benefits include the use of readily available and stable 3-bromopyridines in place of less available and stable 4-halogenated congeners and the ability to converge mixtures of 3- and 5-bromopyridines to a single 4-substituted product.

The base-catalyzed isomerization of aryl halides is described and applied to the tandem isomerization/4-substitution of 3-bromopyridines as a strategy for achieving unconventional selectivity in nucleophilic aromatic substitution reactions.  相似文献   

15.
Strategies that speed up the on-command release of proteins (e.g., enzymes) from stimuli-responsive materials are intrinsically necessary for biosensing applications, such as point-of-care testing, as they will achieve fast readouts with catalytic signal-amplification. However, current systems are challenging to work with because they usually exhibit response times on the order of hours up to days. Herein, we report on the first effort to construct a fast-responding gating system using protein-encapsulating functional DNA superstructures (denoted as protein@3D DNA). Proteins were directly embedded into 3D DNA during the one-pot rolling circle amplification process. We found that the specific DNA–DNA interaction and aptamer–ligand interaction could act as general protocols to release the loaded proteins from 3D DNA. The resulting gating system exhibits fast release kinetics on the order of minutes. Taking advantage of this finding, we designed a simple paper device by employing protein@3D DNA for colorimetric detection of toxin B (Clostridium difficile marker). This device is capable of detecting 0.1 nM toxin B within 16 minutes.

A stimuli-responsive gating system enabled by protein@3D DNA was engineered, which allows controlled protein release in a fast-responsive manner.  相似文献   

16.
We report the first example of controlled polymerization of poly(disulfide)s with narrow molecular weight distributions. 1,4,5-oxadithiepan-2-one (OTP), a disulfide-containing 7-membered ring lactone, was polymerized by using the diphenylphosphate (DPP) catalyzed lactone ring-opening polymerization method. The polymerization proceeded in a living manner, and the resulting polymers displayed very narrow polydispersity index (PDI) values below 1.1 and excellent backbone degradability responding to reducing conditions and UV irradiation.

We report the first example of controlled polymerization of poly(disulfide)s with narrow molecular weight distributions.  相似文献   

17.
Herein, a Janus three-dimensional (3D) DNA nanomachine was constructed for the simultaneous and sensitive fluorescence detection and imaging of dual microRNAs (miRNAs) in cancer cells, which could effectively eliminate signal interference in a homogeneous nanoparticle-based 3D DNA nanostructure caused by the proximity of the two different signal probes to achieve accurate co-location in the same position of living cancer cells. In this system, the Janus nanoparticles were synthesized as the carrier for immobilizing two different oligonucleotides on two different functionalized hemispheres of the nanoparticles to form a Janus 3D DNA nanostructure, which could convert trace amounts of miRNA-21 and miRNA-155 targets into massive FAM and Cy5-labeled duplexes to induce two remarkable fluorescence emissions by the catalytic hairpin assembly (CHA) and 3D DNA walker cascade nucleic acid amplification strategy, realizing sensitive detection and imaging of miRNA targets in cancer cells. Impressively, in comparison with current miRNA imaging methods based on nanoparticle assemblies, the proposed strategy could efficiently eliminate “false positive” results obtained in single type miRNA detection and distinctly increase the immobilization concentration of two different signal probes using Janus nanoparticles as the carrier to further enhance fluorescence intensity, resulting in accurate co-location in the same position of living cells. Meanwhile, the proposed fluorescence imaging technology makes it possible to visualize low concentrations of miRNAs with tiny change associated with some cancers, which could significantly improve the accuracy and precision compared to those of the conventional fluorescence in situ hybridization (FISH) approach. Therefore, it could serve as persuasive evidence for supplying accurate information to better understand biological processes and investigate mechanisms of various biomolecules and subcellular organelles, resulting in the further validation of their function in tumor proliferation and differentiation. This strategy provided an innovative approach to design new generations of nanomachines with ultimate applications in bioanalysis and clinical diagnoses.

A Janus three-dimensional DNA nanomachine was constructed for the simultaneous and sensitive fluorescent detection and imaging of dual microRNAs in the cancer cells.  相似文献   

18.
An accurate and robust method for quantifying the levels of circulating tumor DNA (ctDNA) is vital if this potential biomarker is to be used for the early diagnosis of cancer. The analysis of ctDNA presents unique challenges because of its short half-life and ultralow abundance in early stage cancers. Here we develop an ultrasensitive electrochemical biosensor for rapid detection of ctDNA in whole blood. The sensing of ctDNA is based on hybridization on a network of probe DNA modified gold-coated magnetic nanoparticles (DNA-Au@MNPs). This DNA-Au@MNPs biosensor can selectively detect short- and long-strand DNA targets. It has a broad dynamic range (2 aM to 20 nM) for 22 nucleotide DNA target with an ultralow detection limit of 3.3 aM. For 101 nucleotide ctDNA target, a dynamic range from 200 aM to 20 nM was achieved with a detection limit of 5 fM. This DNA-Au@MNPs based sensor provides a promising method to achieve 20 min response time and minimally invasive cancer early diagnosis.

This study introduces a new electrochemical sensing strategy for the rapid detection of circulating tumor DNA (ctDNA) from whole blood in combination with a network of DNA-Au@MNPs with high sensitivity and excellent selectivity.  相似文献   

19.
Raspberry-like (RB) nanoparticles hold potential for diverse applications due to their hierarchical morphology. Here we developed a novel tandem synthetic approach of nonsynchronous growth based on photo-mediated reversible-deactivation radical polymerization, enabling simple, efficient and bottom-up synthesis of RB nanoparticles of uniform sizes at quantitative conversions of fluorinated monomers. Chain transfer agents of different chain lengths, concentrations and chemical compositions were varied to tune the diameter of RB particles. Importantly, fluorinated RB nanoparticles obtained with this method allow facile post modifications via both covalent bond formation and intermolecular physical interactions without disrupting the RB morphology. The facile nature of this method and versatility of the obtained fluorinated RB materials open new opportunities for the development of functional materials using nanoparticles.

Nonsynchronous growth of raspberry-like (RB) nanoparticles in a one-pot and bottom-up fashion, enabling simple post-modification of RB colloids through both covalent bond formation and supramolecular interaction.  相似文献   

20.
[3,3]-Sigmatropic rearrangement is a powerful reaction to form C–C bonds stereospecifically; however, owing to intrinsic simultaneous bond formation and breakage, this versatile method has not been utilized in polymerization. Herein, we report a new tandem diaza-Cope rearrangement polymerization (DCRP) that can synthesize polymers with defect-free C–C bond formation from easy and efficient imine formation. A mechanistic investigation by in situ1H NMR experiments suggests that this polymerization proceeds by a rapid DCR process, forming an enantiospecific C–C bond that occurs almost simultaneously with imine formation. This polymerization produces not only highly stable polymers against hydrolysis due to resonance-assisted hydrogen bonds (RAHBs) but also chiral polymers containing enantiopure salen moieties, which lead to high-performance Zn2+-selective turn-on chemosensors with up to 73-fold amplification. We also found that their optical activities and sensing performances are heavily dependent on the reaction temperature, which significantly affects the stereoselectivity of DCR.

Herein, we report a new tandem diaza-Cope rearrangement polymerization synthesizing enantiopure polymers with defect-free C–C bond formation. Furthermore, these polymers can be applied as high-performance turn-on Zn2+ sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号