首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实际工程应用中存在着诸如冲击、干摩擦、切换等非光滑因素,以此建立的动力学模型是包含非光滑项的系统.目前针对非光滑动力系统的研究大多基于单一尺度或者两尺度,而含有更多尺度的非光滑动力系统可能会存在更复杂的动力学现象.本论文旨在探讨非光滑动力系统中的多尺度效应及其分岔机制.基于典型的非光滑蔡氏电路,引入一个与系统固有频率存...  相似文献   

2.
The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.  相似文献   

3.
曲子芳  张正娣  彭淼  毕勤胜 《力学学报》2018,50(5):1145-1155
旨在揭示含双频周期激励的不同尺度Filippov系统的非光滑簇发振荡模式及分岔机制. 以Duffing和Van der Pol耦合振子作为动力系统模型,引入周期变化的双频激励项,当两激励频率与固有频率存在量级差时,将两周期激励项表示为可以作为一慢变参数的单一周期激励项的代数表达式,给出了当保持外部激励频率不变,改变参数激励频率的情况下,快子系统随慢变参数变化的平衡曲线及因系统出现的fold分岔或Hopf分岔导致的系统分岔行为的演化机制.结合转换相图和由Hopf分岔产生稳定极限环的演化过程,得到了由慢变参数确定的同宿分岔、多滑分岔的临界情形及因慢变参数改变而出现的混合振荡模式,并详细阐述了系统的簇发振荡机制和非光滑动力学行为特性.通过对比两种不同情形下的平衡曲线及分岔图,指出虽然系统有相似的平衡曲线结构, 却因参数激励频率取值的不同,致使平衡曲线发生了更多的曲折,对应的极值点的个数也有所改变,并通过数值模拟, 对结果进行了验证.   相似文献   

4.
Many neurological diseases are known to be caused by bifurcations induced by a change in the values of one or more regulating parameter of nervous systems. The bifurcation control may have potential applications in the diagnosis and therapy of these dynamical diseases. In this paper, a washout filter-aided dynamic feedback controller composed of the linear term and the nonlinear cubic term is employed to control the onset of Hopf bifurcation in the Morris–Lecar (M–L) neuron model with type I. It is shown that the linear term determines the location of the Hopf bifurcation, while the nonlinear cubic term regulates the criticality of the Hopf bifurcation, preventing it from occurring in a certain range of the externally applied current. The relationships among the externally applied current, the linear control gain and the reciprocal of the filter time constant are further systematically analyzed, which help to make the best choice from the feasible parameter space to achieve our control task. Simulation results are provided to illustrate the effectiveness of the proposed methods.  相似文献   

5.
6.
A variety of border collision bifurcations in a three-dimensional (3D) piecewise smooth chaotic electrical circuit are investigated. The existence and stability of the equilibrium points are analyzed. It is found that there are two kinds of non-smooth fold bifurcations. The existence of periodic orbits is also proved to show the occurrence of non-smooth Hopf bifurcations. As a composite of non-smooth fold and Hopf bifurcations, the multiple crossing bifurcation is studied by the generalized Jacobian matrix. Some interesting phenomena which cannot occur in smooth bifurcations are also considered.  相似文献   

7.
通过引入适当的参数值, 得到了两时间尺度下的快慢耦合振子, 分析了耦合系统及子系统的平衡点及其性质, 进而利用微分包含理论, 探讨了非光滑分界面上的奇异性, 指出在适当的参数条件下, 系统轨迹在穿越分界面时会产生由Hopf分岔和Fold分岔组合的非常规分岔. 给出了不同参数条件下的周期簇发行为, 分析了簇发过程的振荡特性, 指出激发态的频率取决于快子系统在非光滑分界面上的Hopf分岔频率, 而慢子系统的固有频率影响了簇发行为的振荡周期, 并进一步揭示了由非光滑分岔引起的不同周期簇发的分岔机制.  相似文献   

8.
In this paper, nonlinear aeroelastic behavior of a two-dimensional symmetric rotor blade in the dynamic stall regime is investigated. Two different oscillation models have been considered here: pitching oscillation and flap–edgewise oscillation. Stall aeroelastic instability in such systems can potentially lead to structural damage. Hence it is an important design concern, especially for wind turbines and helicopter rotors, where such modes of oscillation are likely to take place. Most previous analyses of such dynamical systems are not exhaustive. System parameters like structural nonlinearity or initial conditions have not been studied which could play a significant role on the overall dynamics. In the present paper, a parametric study on the aeroelastic instability and the nonlinear dynamical behavior of the system has been performed. Emphasis is given on the effect of structural nonlinearity and initial conditions. The aerodynamic loads in the dynamic stall regime have been computed using the Onera model. The qualitative influence of the system parameters is different in the two systems studied. The effect of structural nonlinearity on the bifurcation pattern of the system response is significant in the case of pitching oscillation. The initial condition plays an important role on the aeroelastic stability as well as on the bifurcation pattern in both the systems. In the forced response study, interesting dynamical behavior, like period-3 response, has been observed in the pitching oscillation case. On the other hand, for the flap–edgewise oscillation case, super-harmonic and quasi-harmonic response have been found.  相似文献   

9.
Saddle-node bifurcation can cause dynamical systems undergo large and sudden transitions in their response, which is very sensitive to stochastic and non-stationary influences that are unavoidable in practical applications. Therefore, it is essential to simultaneously consider these two factors for estimating critical system parameters that may trigger the sudden transition. Although many systems exhibit non-smooth dynamical behavior, estimating the onset of saddle-node bifurcation in them under the dual influence remains a challenge. In this work, a new theoretical framework is developed to provide an effective means for accurately predicting the probable time at which a non-smooth system undergoes saddle-node bifurcation while the governing parameters are swept in the presence of noise. The stochastic normal form of non-smooth saddle-node bifurcation is scaled to assess the influence of noise and non-stationary factors by employing a single parameter. The Fokker–Planck equation associated with the scaled normal form is then utilized to predict the distribution of the onset of bifurcations. Experimental efforts conducted using a double-well Duffing analog circuit successfully demonstrate that the theoretical framework developed in this study provides accurate prediction of the critical parameters that induce non-stationary and stochastic activation of saddle-node bifurcation in non-smooth dynamical systems.  相似文献   

10.
为了探究轮对系统的横向失稳问题,考虑了陀螺效应和一系悬挂阻尼的影响作用,建立非线性轮轨接触关系的轮对动力学模型,研究轮对系统的蛇行稳定性、Hopf分岔特性及迁移转化机理.通过稳定性判据获得了轮对系统失稳临界速度.采用中心流形定理和规范型方法对轮对动力学模型进行化简,得到与轮对系统分岔特性相同的一维复变量方程,理论推导求得轮对系统的第一Lyapunov系数的表达式,根据其符号即可判断轮对系统的Hopf分岔类型.讨论了不同参数对轮对系统Hopf分岔临界速度的影响,探究了轮对系统的超临界、亚临界Hopf分岔域在二维参数空间的分布规律.利用数值模拟得到轮对系统的3种典型Hopf分岔图,验证了轮对系统超临界、亚临界Hopf分岔域分布规律的正确性.结果表明,轮对系统的临界速度随着等效锥度的增大而减小,随着一系悬挂的纵向刚度和纵向阻尼的增大而增大,随着纵向蠕滑系数的增大呈先增大后减小.系统参数变化会引起轮对系统Hopf分岔类型发生改变,即亚临界与超临界Hopf分岔相互迁移转化.轮对系统Hopf分岔域在二维参数空间的分布规律对于轮对系统参数匹配和优化设计具有一定的指导意义.  相似文献   

11.
四维超混沌系统Hopf分岔分析与反控制   总被引:1,自引:1,他引:0  
对超混沌系统进行分岔反控制的研究已成为当前一个重要研究方向,常采用线性控制器实现反控制。首先,对一个四维超混沌系统的Hopf分岔特性进行了分析,利用高维分岔理论推导出分岔特性与参数之间的关系式,以此判断系统的分岔类型。然后,设计一个由线性与非线性组合成的混合控制器对系统进行分岔反控制,控制参数取值不同时,系统会呈现出不同的分岔特性。通过分析得出,调控线性控制器参数可以使系统Hopf分岔提前或延迟发生;同时,调控混合控制器的两个控制参数,可以改变系统Hopf分岔特性,实现分岔反控制。  相似文献   

12.
Tang  Yuhong  Xiao  Min  Jiang  Guoping  Lin  Jinxing  Cao  Jinde  Zheng  Wei Xing 《Nonlinear dynamics》2017,90(3):2185-2198

In this paper, we address the problem of the bifurcation control of a delayed fractional-order dual model of congestion control algorithms. A fractional-order proportional–derivative (PD) feedback controller is designed to control the bifurcation generated by the delayed fractional-order congestion control model. By choosing the communication delay as the bifurcation parameter, the issues of the stability and bifurcations for the controlled fractional-order model are studied. Applying the stability theorem of fractional-order systems, we obtain some conditions for the stability of the equilibrium and the Hopf bifurcation. Additionally, the critical value of time delay is figured out, where a Hopf bifurcation occurs and a family of oscillations bifurcate from the equilibrium. It is also shown that the onset of the bifurcation can be postponed or advanced by selecting proper control parameters in the fractional-order PD controller. Finally, numerical simulations are given to validate the main results and the effectiveness of the control strategy.

  相似文献   

13.
In subsynchronous resonance (SSR) systems where shaft systems of turbine-generator sets are coupling with electric networks, Hopf bifurcation will occur under certain conditions. Some singularity phenomena may generate when the hysteretic behavior of couplings in the shaft systems in considered. In this paper, the intrinsic multiple-scale harmonic balance method is extended to the nonlinear autonomous system with the non-analytic property, and the dynamic complexities of the system near the Hopf bifurcation point are analyzed. The project supported by the National Natural Science Foundation of China (as a key project) and the State Education Committee Pre-research Foundation.  相似文献   

14.
In this paper, we consider the differential-algebraic predator–prey model with predator harvesting and two delays. By using the new normal form of differential-algebraic systems, center manifold theorem and bifurcation theory, we analyze the stability and the Hopf bifurcation of the proposed system. In addition, the new effective analytical method enriches the toolbox for the qualitative analysis of the delayed differential-algebraic systems. Finally, numerical simulations are given to show the consistency with theoretical analysis obtained here.  相似文献   

15.
The present paper considers a generalized prey–predator model with time delay. It studies the stability of the nontrivial positive equilibrium and the existence of Hopf bifurcation for this system by choosing delay as a bifurcation parameter and analyzes the associated characteristic equation. The researcher investigates the direction of this bifurcation by using an explicit algorithm. Eventually, some numerical simulations are carried out to support the analytical results.  相似文献   

16.
Considering a good pest control program should reduce the pest to levels acceptable to the public, we investigate the threshold harvesting policy on pests in two predator–prey models. Both models are nonsmooth and the aim of this paper is to provide how threshold harvesting affects the dynamics of the two systems. When the harvesting threshold is larger than some positive level, the harvesting does not affect the ecosystem; when the harvesting threshold is less than the level, the model has complex dynamics with multiple coexistence equilibria, limit cycle, bistability, homoclinic orbit, saddle-node bifurcation, transcritical bifurcation, subcritical and supercritical Hopf bifurcation, Bogdanov–Takens bifurcation, and discontinuous Hopf bifurcation. Firstly, we provide the complete stability analysis and bifurcation analysis for the two models. Furthermore, some numerical simulations are given to illustrate our results. Finally, it is found that harvesting lowers the level of both species for natural enemy–pest system while raises the densities of both species for the pest–crop system. It is seen that the threshold harvesting policy of the enemy system is more effective than the crop system.  相似文献   

17.
Tian  Yuzhou  Huang  Bo 《Nonlinear dynamics》2022,109(2):1135-1151

The three-dimensional Muthuswamy–Chua–Ginoux (MCG, for short) circuit system based on a thermistor is a generalization of the classical Muthuswamy–Chua circuit differential system. At present, there are only partial numerical simulations for the qualitative analysis of the MCG circuit system. In this work, we study local stability and Hopf bifurcations of the MCG circuit system depending on 8 parameters. The emerging of limit cycles under zero-Hopf bifurcation and Hopf bifurcation is investigated in detail by using the averaging method and the center manifolds theory, respectively. We provide sufficient conditions for a class of the circuit systems to have a prescribed number of limit cycles bifurcating from the zero-Hopf equilibria by making use of the third-order averaging method, as well as the methods of Gröbner basis and real solution classification from symbolic computation. Such algebraic analysis allows one to study the zero-Hopf bifurcation for any other differential system in dimension 3 or higher. After, the classical Hopf bifurcation of the circuit system is analyzed by computing the first three focus quantities near the Hopf equilibria. Some examples and numerical simulations are presented to verify the established theoretical results.

  相似文献   

18.
The congestion control algorithm, which has dynamic adaptations at both user ends and link ends, with heterogeneous delays is considered and analyzed. Some general stability criteria involving the delays and the system parameters are derived by generalized Nyquist criteria. Furthermore, by choosing one of the delays as the bifurcation parameter, and when the delay exceeds a critical value, a limit cycle emerges via a Hopf bifurcation. Resonant double Hopf bifurcation is also found to occur in this model. An efficient perturbation-incremental method is presented to study the delay-induced resonant double Hopf bifurcation. For the bifurcation parameter close to a double Hopf point, the approximate expressions of the periodic solutions are updated iteratively by use of the perturbation-incremental method. Simulation results have verified and demonstrated the correctness of the theoretical results.  相似文献   

19.
This paper describes a multiple delayed modified Leslie–Gower type predator–prey system with a strong Allee effect in prey population growth. Non-selective effort is used to harvest the population. The dynamical characteristics of the delay induced system are rigorously studied using mathematical tools. The existence of coexistence equilibria is ensured, and the dynamic behavior of the system is investigated around coexistence equilibria. Uniform strong persistence and permanence of the system are discussed in order to ensure long-term survival of the species. The stability of the delay preserved system is investigated. Sufficient conditions are derived for local and global stability of the system. The existence of Hopf bifurcation phenomenon is examined around interior equilibria of the system. Subsequently, we use normal form method and center manifold theorem to examine the nature of the Hopf bifurcation. Finally, numerical simulations are carried out to validate the analytical findings.  相似文献   

20.
In this paper the effect of system parametric uncertainty on the stall flutter bifurcation behavior of a pitching airfoil is studied. The aerodynamic moment on the two-dimensional rigid airfoil with nonlinear torsional stiffness is computed using the ONERA dynamic stall model. The pitch natural frequency, a cubic structural nonlinearity parameter, and the structural equilibrium angle are assumed to be uncertain. The effect on the amplitude of the response, the bifurcation of the probability distribution, and the flutter boundary is considered. It is demonstrated that the system parametric uncertainty results already in 5% probability of pitching stall flutter at a 12.5% earlier position than the point where a deterministic analysis would predict unstable behavior. Probabilistic collocation is found to be more efficient than the Galerkin polynomial chaos method and Monte Carlo simulation for modeling uncertainty in the post-bifurcation domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号