首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical CO2 reduction (CO2RR) is a sustainable approach to mitigate the increased CO2 emissions and simultaneously produce value-added chemicals and fuels. Metal-nitrogen-carbon (M-N-C) based single-atom catalysts (SACs) have emerged as promising electrocatalysts for CO2RR with high activity, selectivity, and stability. To design efficient SACs for CO2RR, the key influence factors need to be understood. Here, we summarize recent achievements on M-N-C SACs for CO2RR and highlight the significance of the key constituting factors, metal sites, the coordination environment, and the substrates, for achieving high CO2RR performance. The perspective views and guidelines are provided for the future direction of developing M-N-C SACs as CO2RR catalysts.  相似文献   

2.
Precise design and tuning of the micro-atomic structure of single atom catalysts (SACs) can help efficiently adapt complex catalytic systems. Herein, we inventively found that when the active center of the main group element gallium (Ga) is downsized to the atomic level, whose characteristic has significant differences from conventional bulk and rigid Ga catalysts. The Ga SACs with a P, S atomic coordination environment display specific flow properties, showing CO products with FE of ≈92 % at −0.3 V vs. RHE in electrochemical CO2 reduction (CO2RR). Theoretical simulations demonstrate that the adaptive dynamic transition of Ga optimizes the adsorption energy of the *COOH intermediate and renews the active sites in time, leading to excellent CO2RR selectivity and stability. This liquid single atom catalysts system with dynamic interfaces lays the foundation for future exploration of synthesis and catalysis.  相似文献   

3.
The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels. Single atom catalysts (SACs) are encouraging to catalyze the electrochemical CO2RR due to the tunable electronic structure of the central metal atoms, which can regulate the adsorption energy of reactants and reaction intermediates. Moreover, SACs form a bridge between homogeneous and heterogeneous catalysts, providing an ideal platform to explore the reaction mechanism of electrochemical reactions. In this review, we first discuss the strategies for promoting the CO2RR performance, including suppression of the hydrogen evolution reaction (HER), generation of C1 products and formation of C2+ products. Then, we summarize the recent developments in regulating the structure of SACs toward the CO2RR based on the above aspects. Finally, several issues regarding the development of SACs for the CO2RR are raised and possible solutions are provided.

The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels.  相似文献   

4.
Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.  相似文献   

5.
Single-atom catalysts (SACs) are of great interest because of their ultrahigh activity and selectivity. However, it is difficult to construct model SACs according to a general synthetic method, and therefore, discerning differences in activity of diverse single-atom catalysts is not straightforward. Herein, a general strategy for synthesis of single-atom metals implanted in N-doped carbon (M1-N-C; M=Fe, Co, Ni and Cu) has been developed starting from multivariate metal–organic frameworks (MOFs). The M1-N-C catalysts, featuring identical chemical environments and supports, provided an ideal platform for differentiating the activity of single-atom metal species. When employed in electrocatalytic CO2 reduction, Ni1-N-C exhibited a very high CO Faradaic efficiency (FE) up to 96.8 % that far surpassed Fe1-, Co1- and Cu1-N-C. Remarkably, the best-performer, Ni1-N-C, even demonstrated excellent CO FE at low CO2 pressures, thereby representing a promising opportunity for the direct use of dilute CO2 feedstock.  相似文献   

6.
The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction ( CO2RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2RR. Here, we present an introduction of some typical catalysts with PVMS in CO2RR and give some understanding of the activity and stability for these related catalysts.  相似文献   

7.
Single-atom catalysis is the “hot spot” in the field of catalysis due to the special geometries, electronic states, and their unique catalytic performance. Single-atom catalysts(SACs), isolated metal atoms dispersed on the support, show the highest atom efficiency, cutting down the potential cost in the industrial process. Consequently, this “homo-hetero” catalyst could be a promising candidate for the next-generation catalysts. The applications for the SACs are widely reported, like gas-solid reactions, organic reactions, and electro-catalysis. In this mini- review, we will focus on the recent work of SACs on electro-catalysis, including hydrogen evolution reaction(HER), oxygen reduction reaction(ORR), oxygen evolution reaction(OER), CO2 reduction reaction(CO2 RR), and nitrogen reduction reaction(NRR).  相似文献   

8.
9.
Single-atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single-atom electrode greatly limit their performance. Herein, we prepared a nickel single-atom electrode consisting of isolated, high-density and low-valent nickel(I) sites anchored on a self-standing N-doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon-fiber paper. The combination of single-atom nickel(I) sites and self-standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d-band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single-nickel-atom electrode exhibits a specific current density of −32.87 mA cm−2 and turnover frequency of 1962 h−1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

10.
Single-atom electrocatalysts (SACs), which comprise singly isolated metal sites supported on heterogeneous substrates, have attracted considerable recent attention as next-generation electrocatalysts for various key reactions from the viewpoint of the environment and energy. Not only electrocatalytic activity but also selectivity can be precisely tuned via the construction of SACs with a defined coordination structure, such as homogeneous organometallics. Covalent organic frameworks (COFs) are promising supports for single-atom sites with designed coordination environments due to their unique physicochemical properties, which include porous structures, robustness, a wide range of possible designs, and abundant heteroatoms to coordinate single-metal sites. The rigid frameworks of COFs can hold unstable single-metal atoms, such as coordinatively unsaturated sites or easily aggregated Pt-group metals, which exhibit unique electrocatalytic selectivity. This minireview summarizes recent advances in the selective reactions catalysed by SACs, mainly those supported on triazine-based COFs.

Single-atom electrocatalysts (SACs) have attracted considerable attention as selective electrocatalysts. Metal-doped covalent triazine frameworks will be a novel platform for selective SACs to solve energy and environmental issues.  相似文献   

11.
Heterogeneous Ni–N–C single-atom catalysts (SACs) have attracted great research interest regarding their capability in facilitating the CO2 reduction reaction (CO2RR), with CO accounting for the major product. However, the fundamental nature of their active Ni sites remains controversial, since the typically proposed pyridinic-type Ni configurations are inactive, display low selectivity, and/or possess an unfavorable formation energy. Herein, we present a constant-potential first-principles and microkinetic model to study the CO2RR at a solid–water interface, which shows that the electrode potential is crucial for governing CO2 activation. A formation energy analysis on several NiNxC4−x (x = 1–4) moieties indicates that the predominant Ni moieties of Ni–N–C SACs are expected to have a formula of NiN4. After determining the potential-dependent thermodynamic and kinetic energy of these Ni moieties, we discover that the energetically favorable pyrrolic-type NiN4 moiety displays high activity for facilitating the selective CO2RR over the competing H2 evolution. Moreover, model polarization curves and Tafel analysis results exhibit reasonable agreement with existing experimental data. This work highlights the intrinsic tetrapyrrolic coordination of Ni for facilitating the CO2RR and offers practical guidance for the rational improvement of SACs, and this model can be expanded to explore mechanisms of other electrocatalysis in aqueous solutions.

A constant-potential first-principles and microkinetic model is developed to uncover the nature of heterogeneous Ni–N–C catalysts. It highlights the crucial role of a pyrrolic-type NiN4 moiety in electrochemical CO2 reduction.  相似文献   

12.
Converting carbon dioxide (CO2) into high-value fuels or chemicals is considered as a promising way to utilize CO2 and alleviate the excessive greenhouse gas emission. Among multiple catalysis approaches, electrochemical reduction of CO2 to ethanol has an important prospect due to the high energy density and widely applications of ethanol. In recent years, many electrocatalysts for CO2 reduce reaction (CO2RR) have shown promising catalytic activity for ethanol production. In this review, we will introduce the recent progress in this field. The basic principles and electrochemical performances of CO2RR are reviewed at first. Then, several categories of active electrocatalysts for CO2RR to ethanol are summarized, including the discussion of reaction mechanism and catalytic sites. Finally, several possible strategies are proposed, providing guidance for future design and preparation of high-performance catalysts.  相似文献   

13.
Carbon dioxide (CO2) reduction in aqueous solutions is an attractive strategy for carbon capture and utilization. Cuprous oxide (Cu2O) is a promising catalyst for CO2 reduction as it can convert CO2 into valuable hydrocarbons and suppress the side hydrogen evolution reaction (HER). However, the nature of the active sites in Cu2O remains under debate because of the complex surface structure of Cu2O under reducing conditions, leading to limited guidance in designing improved Cu2O catalysts. This paper describes the functionality of surface‐bonded hydroxy groups on partially reduced Cu2O(111) for the CO2 reduction reaction (CO2RR) by combined density functional theory (DFT) calculations and experimental studies. We find that the surface hydroxy groups play a crucial role in the CO2RR and HER, and a moderate coverage of hydroxy groups is optimal for promotion of the CO2RR and suppression of the HER simultaneously. Electronic structure analysis indicates that the charge transfer from hydroxy groups to coordination‐unsaturated Cu (CuCUS) sites stabilizes surface‐adsorbed COOH*, which is a key intermediate during the CO2RR. Moreover, the CO2RR was evaluated over Cu2O octahedral catalysts with {111} facets and different surface coverages of hydroxy groups, which demonstrates that Cu2O octahedra with moderate coverage of hydroxy groups can indeed enhance the CO2RR and suppress the HER.  相似文献   

14.
Single-atom catalysts (SACs) have emerged as a new frontier in areas such as electrocatalysis, photocatalysis, and enzymatic catalysis. Aided by recent advances in the synthetic methodologies of nanomaterials, atomic characterization technologies, and theoretical calculation modeling, various SACs have been prepared for a variety of catalytic reactions. To meet the requirements of SACs with distinctive performance and appreciable selectivity, much research has been carried out to adjust the coordination configuration and electronic properties of SACs. This concept summarizes the latest advances in the experimental and computational efforts aimed at tuning the axial coordination of SACs. Series of atoms, functional groups or even macrocycles are oriented into the atomic metal center, and how this affects the electrocatalytic performance is also reviewed. Finally, this concept presents perspectives for the further precise design, preparation and in-situ detection of axially coordinated SACs.  相似文献   

15.
Electrochemical carbon dioxide reduction(CO2RR) plays an important role in solving the problem of high concentration of CO2in the atmosphere and realizing carbon cycle. Core-shell structure has many unique features including tandem catalysis, lattice strain effect, defect engineering, which exhibit great potential in electrocatalysis. In this review, we focus on the advanced core-shell metal-based catalysts(CMCs) for electrochemical CO2RR. The recent progress of ...  相似文献   

16.
Clean and sustainable electrochemical energy storage has attracted extensive attention. It remains a great challenge to achieve next-generation rechargeable battery systems with high energy density, good rate capability, excellent cycling stability, efficient active material utilization, and high coulombic efficiency. Many catalysts have been explored to promote electrochemical reactions during the charge and discharge process. Among reported catalysts, single-atom catalysts (SACs) have attracted extensive attention due to their maximum atom utilization efficiency, homogenous active centres, and unique reaction mechanisms. In this perspective, we summarize the recent advances of the synthesis methods for SACs and highlight the recent progress of SACs for a new generation of rechargeable batteries, including lithium/sodium metal batteries, lithium/sodium–sulfur batteries, lithium–oxygen batteries, and zinc–air batteries. The challenges and perspectives for the future development of SACs are discussed to shed light on the future research of SACs for boosting the performances of rechargeable batteries.

Single-atom catalysts are reviewed, aiming to achieve optimized properties to boost electrochemical performances of high-energy batteries.  相似文献   

17.
The electrochemical carbon dioxide reduction reaction (CO2RR) to produce synthesis gas (syngas) with tunable CO/H2 ratios has been studied by supporting Pd catalysts on transition metal nitride (TMN) substrates. Combining experimental measurements and density functional theory (DFT) calculations, Pd‐modified niobium nitride (Pd/NbN) is found to generate much higher CO and H2 partial current densities and greater CO Faradaic efficiency than Pd‐modified vanadium nitride (Pd/VN) and commercial Pd/C catalysts. In‐situ X‐ray diffraction identifies the formation of PdH in Pd/NbN and Pd/C under CO2RR conditions, whereas the Pd in Pd/VN is not fully transformed into the active PdH phase. DFT calculations show that the stabilized *HOCO and weakened *CO intermediates on PdH/NbN are critical to achieving higher CO2RR activity. This work suggests that NbN is a promising substrate to modify Pd, resulting in an enhanced electrochemical conversion of CO2 to syngas with a potential reduction in precious metal loading.  相似文献   

18.
Single-atom catalysts offer a promising pathway for electrochemical CO2 conversion. However, it is still a challenge to optimize the electrochemical performance of dual-atom catalysts. Here, an atomic indium-nickel dual-sites catalyst bridged by an axial oxygen atom (O-In-N6-Ni moiety) was anchored on nitrogenated carbon (InNi DS/NC). InNi DS/NC exhibits superior CO selectivity with Faradaic efficiency higher than 90 % over a wide potential range from −0.5 to −0.8 V versus reversible hydrogen electrode (vs. RHE). Moreover, an industrial CO partial current density up to 317.2 mA cm−2 is achieved at −1.0 V vs. RHE in a flow cell. In situ ATR-SEIRAS combined with theory calculations reveal that the synergistic effect of In-Ni dual-sites and O atom bridge not only reduces the reaction barrier for the formation of *COOH, but also retards the undesired hydrogen evolution reaction. This work provides a feasible strategy to construct dual-site catalysts towards energy conversion.  相似文献   

19.
A general graphene quantum dot-tethering design strategy to synthesize single-atom catalysts (SACs) is presented. The strategy is applicable to different metals (Cr, Mn, Fe, Co, Ni, Cu, and Zn) and supports (0D carbon nanosphere, 1D carbon nanotube, 2D graphene nanosheet, and 3D graphite foam) with the metal loading of 3.0–4.5 wt %. The direct transmission electron microscopy imaging and X-ray absorption spectra analyses confirm the atomic dispersed metal in carbon supports. Our study reveals that the abundant oxygenated groups for complexing metal ions and the rich defective sites for incorporating nitrogen are essential to realize the synthesis of SACs. Furthermore, the carbon nanotube supported Ni SACs exhibits high electrocatalytic activity for CO2 reduction with nearly 100 % CO selectivity. This universal strategy is expected to open up new research avenues to produce SACs for diverse electrocatalytic applications.  相似文献   

20.
氧还原反应(ORR)在电化学能量存储和转换系统以及精细化学制剂的清洁合成中发挥着重要作用. 然而, ORR过程的动力学极其缓慢, 需要使用铂族贵金属催化剂加快其反应动力学速率. 铂基催化剂的高成本严重阻碍了其大规模的商业化. 由于单原子催化剂(SACs)具有结构明确、 本征活性高和原子效率高的特点, 有望取代昂贵的铂族贵金属催化剂. 迄今, 在进一步提高SACs的ORR活性方面已有大量的研究报道, 包括定制金属中心的配位结构、 丰富金属中心的浓度以及设计衬底的电子结构和孔隙率等. 本文综合评述了近年来SACs在ORR性能以及与ORR相关的H2O2生产、 金属-空气电池和低温燃料电池等方面的应用研究进展. 总结了通过引入其它金属或配体来调整孤立金属中心的配位结构、 通过增加金属负载来增加单原子位点的浓度以及通过优化载体的孔隙度来优化催化性能和电子传输等方面的研究进展, 并对SCAs的未来发展方向和面临的挑战提出了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号