首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsteady behavior of a 2-D circular elastic capsule was investigated in three viscous shear flows. An immersed boundary method (IBM) has been used to solve the dynamic fluid-structure interaction of the capsule. Computations were carried out in finite parameter ranges where the Reynolds number is Re=1-40 and the capillary number is Ca=0.0005-0.05, which is the ratio of the external viscous shear stress to the resistant elastic tensions of the membrane. For the simple shear flow, the effect of inertia on the transient behavior of the capsule was studied. For the pulsatile shear flow, two values of the peak fluid strain, Tf=1 and 5, were considered for the quasi-steady capsule mechanics. The capsule shows a cyclic structural response that includes subharmonics as the Reynolds number is elevated to 10 and 40. The capsule dynamic response includes a phase lag, which is a function of the capillary number, the Reynolds number, and the peak fluid strain. Finally, the capsule flowing in the Couette flow shows lateral migration due to the transient lift force, which is higher for lower Ca and higher Re. When capsules with diverse elasticity are dispersed along the velocity gradient, the capsule with a hard membrane experienced greater lift than the one with a soft membrane.  相似文献   

2.
We study compressible turbulent flow in a circular pipe at computationally high Reynolds number. Classical related issues are addressed and discussed in light of the DNS data, including validity of compressibility transformations, velocity/temperature relations, passive scalar statistics, and size of turbulent eddies. Regarding velocity statistics, we find that Huang’s transformation yields excellent universality of the scaled Reynolds stresses distributions, whereas the transformation proposed by Trettel and Larsson (2016) yields better representation of the effects of strong variation of density and viscosity occurring in the buffer layer on the mean velocity distribution. A clear logarithmic layer is recovered in terms of transformed velocity and wall distance coordinates at the higher Reynolds number under scrutiny (Reτ ≈ 1000), whereas the core part of the flow is found to be characterized by a universal parabolic velocity profile. Based on formal similarity between the streamwise velocity and the passive scalar transport equations, we further propose an extension of the above compressibility transformations to also achieve universality of passive scalar statistics. Analysis of the velocity/temperature relationship provides evidence for quadratic dependence which is very well approximated by the thermal analogy proposed by Zhang et al. (2014). The azimuthal velocity and scalar spectra show an organization very similar to canonical incompressible flow, with a bump-shaped distribution across the flow scales, whose peak increases with the wall distance. We find that the size growth effect is well accounted for through an effective length scale accounting for the local friction velocity and for the local mean shear.  相似文献   

3.
In this paper we aim to create an experimental and numerical model of nano and micro filaments suspended in a confined Poiseuille flow. The experimental data obtained for short nanofibres will help to elucidate fundamental questions concerning mobility and deformation of biological macromolecules due to hydrodynamic stresses from the surrounding fluid motion. Nanofibres used in the experiments are obtained by electrospinning polymer solutions. Their typical dimensions are 100–1000 μm (length) and 0.1–1 μm (diameter). The nanofibre dynamics is followed experimentally under a fluorescence microscope. A precise multipole expansion method of solving the Stokes equations, and its numerical implementation are used to construct a bead-spring model of a filament moving in a Poiseuille flow between two infinite parallel walls. Simulations show typical behaviour of elongated macromolecules. Depending on the parameters, folding and unfolding sequences of a flexible filament are observed, or a rotational and translation motion of a shape-preserving filament. An important result of our experiments is that nanofibres do not significantly change their shape while interacting with a micro-flow. It appeared that their rotational motion is better reproduced by the shape-preserving Stokesian bead model with all pairs of beads connected by springs, omitting explicit bending forces.  相似文献   

4.
5.
 Results from experiments on the thermocapillary migration of air bubbles and Fluorinert drops in a Dow–Corning silicone oil aboard a NASA Space Shuttle mission are presented and discussed. The experiments cover a wider range of Marangoni and Reynolds numbers than that attained in a prior flight experiment. The data are consistent with earlier results, and are compared with theoretical predictions. Large air bubbles were found to deform slightly in shape to oblate spheroids while the deformation of even the largest drops was within the uncertainty of the size measurements. Received: 18 December 1997/Accepted: 30 May 1998  相似文献   

6.
7.
Instabilities in two-layer Couette flow are investigated from a small Reynolds number expansion of the eigenvalue problem governing linear stability. The wave velocity and growth rate are given explicitly, and previous results for long waves and short waves are retrieved as special cases. In addition to the inertial instability due to viscous stratification, the flow may be subject to the Rayleigh–Taylor instability. As a result of the competition of these two instabilities, inertia may completely stabilise a gravity-unstable flow above some finite critical Froude number, or conversely, for a gravity-stable flow, inertia may give rise to finite wavenumber instability above some finite critical Weber number. General conditions for these phenomena are given, as well as exact or approximate values of the critical numbers. The validity domain of the many asymptotic expansions is then investigated from comparison with the numerical solution. It appears that the small-Re expansion gives good results beyond Re = 1, with an error less that 1%. For Reynolds numbers of a few hundred, we show from the eigenfunctions and the energy equation that the nature of the instability changes: instability still arises from the interfacial mode (there is no mode crossing), but this mode takes all the features of a shear mode. The other modes correspond to the stable eigenmodes of the single-layer Couette flow, which are recovered when one fluid is rigidified by increasing its viscosity or surface tension.  相似文献   

8.
Unsteady three-dimensional (3-D) numerical simulations of linear shear flow past a square cylinder at moderate Reynolds number (Re=200) are performed. The shear parameter (K) considered in this study is varied as 0.0, 0.1, and 0.2. For the uniform flow (K=0.0) case, the chosen Re falls in the transition Reynolds number range. The low frequency force pulsations of square cylinder transition phenomena are observed to decrease with increasing shear parameter. The evolution of streamwise vortical structures indicates a mode A spanwise instability in the uniform flow. Unlike in uniform flow, mixed mode A and mode B spanwise instability is observed in the case of a shear flow. The autocorrelation function of the lift and the drag coefficients is improved for any particular separation distance with increasing K.  相似文献   

9.
Three-dimensional numerical simulation is presented on the motion of a deformable capsule undergoing large deformation in a plane Poiseuille flow in a channel at small inertia. The capsule is modeled as a liquid drop surrounded by an elastic membrane which follows neo-Hookean law. The numerical methodology is based on a mixed finite-difference/Fourier transform method for the flow solver and a front-tracking method for the deformable interface. The methodology can address large deformation of a capsule over a wide range of capsule-to-medium viscosity ratio. An extensive validation of the methodology is presented on capsule deformation in linear shear flow and compared with the boundary-element/integral simulations. Motion of a capsule in wall-bounded parabolic flow is simulated over an extended period of time to consider both transient and steady-state motion. Lateral migration of the capsule towards the centerline of the channel is observed. Results are presented over a range of capillary number, viscosity ratio, capsule-to-channel size ratio, and lateral location. After an initial transient phase during which the capsule deforms very quickly, the flow of the capsule is observed to be a quasi-steady process irrespective of capillary number (Ca)(Ca), capsule-to-channel size ratio (a/H)(a/H), and viscosity ratio (λ)(λ). Migration velocity and capsule deformation are observed to increase with increasing CaCa and a/Ha/H, but decrease with increasing λλ, and increasing distance from the wall. Numerical results on the capsule migration are compared with the analytical results for liquid drops, and capsules with Hookean membrane which are valid in the limit of small deformation. Unlike the prediction for liquid drops, capsules are observed to migrate toward the centerline for 0.2?λ?50.2?λ?5 range considered here. The migration velocity is observed to depend linearly on (a/H)3(a/H)3, in agreement with the small-deformation theory, but non-linearly on CaCa and the distance from the wall, in violation of the theory. Using the present numerical results and the analytical results, we present a correlation that can reasonably predict migration velocity of a capsule for moderate values of a/Ha/H and CaCa.  相似文献   

10.
低雷诺数下弹性圆柱体涡激振动及影响参数分析   总被引:2,自引:1,他引:2  
利用Fluent软件数值求解不可压缩粘性流体的N-S方程,研究均匀来流Re=200时弹性圆柱体的涡激振动.圆柱体运动简化为质量-弹簧-阻尼系统,将Newmark-β方法代码写入用户自定义函数(UDF)求解运动方程,柱体与流体间的非线性耦合作用通过动网格技术实现.详细分析了涡激力系数、柱体位移特征值和尾流涡结构随频率比的变化关系,获得"相位开关"、"拍"等现象.考虑流向振动对横向振动影响时,圆柱体最大横向振幅为0.65倍直径.当固定频率比,而质量比或折合阻尼增大时,圆柱体流向与横向振动均呈非线性衰减趋势,但增大质量比对流向平均位移的偏离起到更好的控制效果.  相似文献   

11.
The determination of the critical transition Reynolds number is of practical importance for some engineering problems. However, it is not available with the current theoretical method, and has to rely on experiments. For supersonic/hypersonic boundary layer flows, the experimental method for determination is not feasible either. Therefore,in this paper, a numerical method for the determination of the critical transition Reynolds number for an incompressible plane channel flow is proposed. It is basically aimed to test the feasibility of the method. The proposed method is extended to determine the critical Reynolds number of the supersonic/hypersonic boundary layer flow in the subsequent papers.  相似文献   

12.
Arbitrary three-dimensional perturbations are considered. It is established that as the compliance of the walls increases, oblique waves become the most dangerous, which essentially differentiates the system in question from Poiseuille flow in a rigid channel. The flow stability is analyzed over a broad interval of values of the elasticity parameter overlapping the values for real materials.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–72, May–June, 1988.  相似文献   

13.
Summary The stability of fully developed plane Couette flow and pipe flow with viscous heating is studied at low Reynolds number for a Newtonian liquid with a temperature-dependent viscosity. The solution is obtained by a direct integration method of the eigenfunction equations, with eigenvalues located in the complex plane by means of the argument principle of complex variable theory. An instability will occur in plane Couette flow, but outside the parameter range which will be encountered in practice. There is no comparable instability in pipe flow. It can be concluded that a thermal mechanism does not cause the low Reynolds number instabilities observed in polymer processing operations.
Zusammenfassung Für eine newtonsche Flüssigkeit mit temperaturabhängiger Viskosität wird die Stabilität der voll entwickelten ebenen Couette-Strömung und Rohrströmung bei niedrigen Reynolds-Zahlen untersucht. Die Lösung wird durch direkte Integration der Eigenwert-Gleichungen gewonnen, wobei das Argument-Prinzip der Funktionentheorie auf die in der komplexen Ebene gelegenen Eigenwerte angewandt wird. In der ebenen Couette-Strömung wird eine Instabilität gefunden, jedoch außerhalb des in der Praxis realisierten Parameter-Bereichs. In der Rohrströmung gibt es dagegen keine vergleichbare Instabilität. Man kommt zu dem Schluß, daß thermische Mechanismen nicht für die in Polymer-Verarbeitungsprozessen beobachteten bei niedrigen Reynolds-Zahlen auftretenden Instabilitäten verantwortlich gemacht werden können.


With 6 figures and 1 table  相似文献   

14.
A two-component laser Doppler velocimeter with high spatial and temporal resolution was used to obtain measurements for fully developed turbulent flow of water through a channel with an aspect ratio of 12 : 1 at Re=5700 (based on the centerline velocity and the half-height of the channel). Statistical quantities that were determined are the mean streamwise velocity, the root-mean-square of the fluctuations of the streamwise and the normal velocities, the Reynolds shear stress and higher order moments. Turbulence production is calculated from these quantities. Turbulence statistics obtained from experiments are compared with results from a direct numerical simulation at the same Reynolds number. The good agreement validates a recent DNS, at Re=5700, which is approximately twice as large as used in most previous studies. Received: 12 May 1997 / Accepted: 8 April 1998  相似文献   

15.
16.
A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Direct numerical simulations of fully-developed turbulent channel flow with irregular rough walls have been performed at four friction Reynolds numbers, namely, 180, 240, 360 and 540, yielding data in both the transitionally- and fully-rough regime. The same roughness topography, which was synthesised with an irregular, isotropic and near-Gaussian height distribution, is used in each simulation. Particular attention is directed towards the wall-normal variation of flow statistics in the near-roughness region and the fluid-occupied region beneath the crests, i.e. within the roughness canopy itself. The goal of this study is twofold. (i) Provide a detailed account of first- and second-order double-averaged velocity statistics (including profiles of mean velocity, dispersive stresses, Reynolds stresses, shear stress gradients and an analysis of the mean force balance) with the overall aim of understanding the relative importance of “form-induced” and “turbulence-induced” quantities as a function of the friction Reynolds number. (ii) Investigate the possibility of predicting the levels of streamwise dispersive stress using a phenomenological closure model. Such an approach has been applied successfully in the context of idealised vegetation canopies (Moltchanov & Shavit, 2013, Water Resour. Res., vol. 49, pp. 8222-8233) and is extended here, for the first time, to an irregular rough surface. Overall, the results reveal that strong levels of dispersive stress occur beneath the roughness crests and, for the highest friction Reynolds number considered in this study, show that the magnitude (and gradient) of these “form-induced” stresses exceed their Reynolds stress counterparts. In addition, this study emphasises that the dominant source of spatial heterogeneity within the irregular roughness canopy are “wake-occupied” regions and that a suitable parameterisation of the wake-occupied area is required to obtain an accurate prediction of streamwise dispersive stress.  相似文献   

18.
Reynolds number dependence of vortical patterns visualized by smoke technique in accelerating flow behind airfoils is documented in photographic sequences at angles of attack 20° and 60°. At low Reynolds numbers the vortical pattern development is quite simple. With increasing Reynolds numbers these patterns become increasingly complex, and onset of turbulence occurs early and generates large scale turbulent vortex patterns.  相似文献   

19.
The purpose of this study is to perform a numerical application of the shape optimization formulation of a body located in an incompressible viscous flow field. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint condition by the Lagrange multiplier method and the adjoint equations using adjoint variables corresponding to the state equations. As a numerical study, the drag force minimization problem in the steady Stokes flow, which means approximated equation of the low Reynolds number Navier–Stokes equation is carried out. After that, the unsteady Navier–Stokes flow is analysed. As the minimization algorithm, the steepest descent method is successfully applied. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
An apparatus was designed and built to explore the effects of transient flow fluctuations on the dynamic behavior of particles in low Reynolds number (LRN) flows. While many experiments have been performed on LRN particle flows, relatively few have investigated periodic oscillations on the flow dynamics. The apparatus was oscillated at a frequency of 10 Hz with peak-to-peak displacements on the order of 10 mm. Particles of varying densities and diameters were placed into the oscillating flow. Video images of the particle dynamics were captured with both a personal video camcorder and high-speed digital camera. In parallel, computations were performed for the particle system in order to validate the experimental method and apparatus. Received: 25 February 2000/Accepted: 5 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号