首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An anti-selective catalytic asymmetric Michael-type vinylogous addition of β,γ-butenolides to chromones was developed. The catalyst system developed herein is characterized by tuning of the steric and electronic effects using a proper Biphep-type chiral ligand to invert the diastereoselection, and improvement of the catalyst turnover by a coordinative phenolic additive. The catalytic protocol renders potentially biologically active natural product analogs accessible in good yield with moderate diastereoselectivity and high enantiomeric purity, mostly greater than 99% ee.

An anti-selective catalytic asymmetric Michael-type vinylogous addition of β,γ-butenolides to chromones was developed.  相似文献   

2.
A direct catalytic asymmetric multiple dearomatization reaction of phenols was disclosed, which provides expedient access to a series of architecturally complex polycyclic compounds bearing four stereogenic centers in high enantiopurity. The key to achieve such a transformation is the combination of a dearomative 1,8-addition of β-naphthols to para-quinone methides generated in situ from propargylic alcohols and a subsequent intramolecular dearomative Diels–Alder reaction. Noteworthily, this protocol enrichs not only the diversity of dearomatized products but also the toolbox of dearomatization strategies.

The first chiral phosphoric acid catalyzed asymmetric multiple dearomatizations of phenols for the synthesis of bridged polycyclic compounds are reported.  相似文献   

3.
The efficient preparation of chiral porous organic cages (POCs) with specific functions is challenging, and their application in asymmetric catalysis has not previously been explored. In this work, we have achieved the construction of chiral POCs based on a supramolecular tetraformyl-resorcin[4]arene scaffold with different chiral proline-modified diamine ligands and utilizing dynamic imine chemistry. The incorporation of V-shaped or linear chiral diamines affords the [4 + 8] square prism and [6 + 12] octahedral POCs respectively. The appended chiral proline moieties in such POCs make them highly active supramolecular nanoreactors for asymmetric aldol reactions, delivering up to 92% ee. The spatial distribution of chiral catalytic sites in these two types of POCs greatly affects their catalytic activities and enantioselectivities. This work not only lays a foundation for the asymmetric catalytic application of chiral POCs, but also contributes to our understanding of the catalytic function of biomimetic supramolecular systems.

Two calix[4]resorcinarene-based chiral POCs with different self-assembly forms were constructed. The difference in the spatial distribution of chiral organocatalytic sites leads to the two chiral POCs exhibiting distinct stereoselectivities.  相似文献   

4.
New types of C2-symmetric chiral macrodiolides are readily obtained via chiral N,N′-dioxide-scandium(iii) complex-promoted asymmetric tandem Friedel–Crafts alkylation/intermolecular macrolactonization of ortho-quinone methides with C3-substituted indoles. This protocol provides an array of enantioenriched macrodiolides with 16, 18 or 20-membered rings in moderate to good yields with high diastereoselectivities and excellent enantioselectivities through adjusting the length of the tether at the C3 position of indoles. Density functional theory calculations indicate that the formation of macrocycles is more favorable than that of 9-membered-ring lactones in terms of kinetics and thermodynamics. The potential utility of these intriguing chiral macrodiolide molecules is demonstrated in the enantiomeric recognition of aminols and chemical recognition of metal ions.

An asymmetric tandem Friedel–Crafts alkylation/intermolecular macrolactonization of ortho-quinone methides with C3-substituted indoles was achieved by using a chiral N,N′-dioxide-scandium(iii) complex.  相似文献   

5.
A new strategy of asymmetric carbonyl catalysis via a chiral Lewis acid-bonded aldehyde has been developed for the direct Mannich/condensation cascade reaction of glycine ester with aromatic aldimines. The co-catalytic system of 2-picolinaldehyde and chiral YbIII-N,N′-dioxides was identified to be efficient under mild conditions, providing a series of trisubstituted imidazolidines in moderate to good yields with high diastereo- and enantioselectivities. Enantiodivergent synthesis was achieved via changing the sub-structures of the chiral ligands. The reaction could be carried out in a three-component version involving glycine ester, aldehydes, and anilines with equally good results. Based on control experiments, the X-ray crystal structure study and theoretical calculations, a possible dual-activation mechanism and stereo-control modes were provided to elucidate carbonyl catalysis and enantiodivergence.

The catalytic asymmetric Mannich/condensation of glycine ester with aldimines was achieved by merging chiral N,N′-dioxide/YbIII complex Lewis acid catalysis/carbonyl catalysis under mild condition.  相似文献   

6.
A chiral N,N′-dioxide/cobalt(ii) complex catalyzed highly diastereoselective and enantioselective tandem aza-Piancatelli rearrangement/intramolecular Diels–Alder reaction has been disclosed. Various valuable hexahydro-2a,5-epoxycyclopenta[cd]isoindoles bearing six contiguous stereocenters have been obtained in good yields with excellent diastereo- and enantio-selectivities from a wide range of both readily available 2-furylcarbinols and N-(furan-2-ylmethyl)anilines.

An asymmetric aza-Piancatelli rearrangement/Diels–Alder cascade reaction between 2-furylcarbinols and N-(furan-2-ylmethyl)anilines was realized by using a chiral N,N′-dioxide/cobalt(ii) complex catalyst.  相似文献   

7.
A method for remote radical C–H alkynylation and amination of diverse aliphatic alcohols has been developed. The reaction features a copper nucleophile complex formed in situ as a photocatalyst, which reduces the silicon-tethered aliphatic iodide to an alkyl radical to initiate 1,n-hydrogen atom transfer. Unactivated secondary and tertiary C–H bonds at β, γ, and δ positions can be functionalized in a predictable manner.

Remote C−H alkynylation and amination of aliphatic alcohols.  相似文献   

8.
A catalytic asymmetric conjugate addition/Schmidt-type rearrangement of vinyl azides and (E)-alkenyloxindoles was realized. It afforded a variety of optically active 3,2′-pyrrolinyl spirooxindoles with high yields (up to 98%), and excellent diastereo- and enantioselectivities (up to 98% ee, >19 : 1 dr), even at the gram-scale in the presence of a chiral N,N′-dioxide–nickel(ii) complex. In addition, a possible catalytic cycle and transition state model were proposed to rationalize the stereoselectivity.

Lewis acid catalyzed asymmetric synthesis of 3,2′-pyrrolinyl spirooxindole skeletons via conjugate addition/Schmidt-type rearrangement of vinyl azides and (E)-alkenyloxindoles.  相似文献   

9.
A novel method by a one-step introduction of axial chirality and sterically hindered group has been developed for facile synthesis of axially chiral styrene-type carboxylic acids. With the palladium-catalyzed C–H arylation and olefination of readily available cinnamic acid established, this transformation demonstrated excellent yield, excellent stereocontrol (up to 99% yield and 99% ee), and broad substrate scope under mild conditions. The axially chiral styrene-type carboxylic acids produced have been successfully applied to Cp*CoIII-catalyzed asymmetric C–H activation reactions, indicating their potential as chiral ligands or catalysts in asymmetric synthesis.

Palladium-catalyzed asymmetric C–H functionalization to yield axially chiral styrene-type carboxylic acids is described, in which axial chirality and sterically hindered group were incorporated in one-step.  相似文献   

10.
All-carbon quaternary stereocenters are ubiquitous in natural products and significant in drug molecules. However, construction of all-carbon stereocenters is a challenging project due to their congested chemical environment. And, when vicinal all-carbon quaternary stereocenters are present in one molecule, they will dramatically increase its synthetic challenge. A chiral titanium promoted enantioselective photoenolization/Diels–Alder (PEDA) reaction allows largely stereohindered tetra-substituted dienophiles to interact with highly active photoenolized hydroxy-o-quinodimethanes, delivering fused or spiro polycyclic rings bearing vicinal all-carbon quaternary centers in excellent enantiomeric excess through one-step operation. This newly developed enantioselective PEDA reaction will inspire other advances in asymmetric excited-state reactions, and could be used in the total synthesis of structurally related complex natural products or drug-like molecules for drug discovery.

An enantioselective PEDA reaction was developed to enable stereohindered dienophiles to interact with transient photoenolized hydroxy-o-quinodimethanes, delivering fused or spiro polycyclic rings bearing 2–3 vicinal all-carbon quaternary centers in good yield and excellent ee.  相似文献   

11.
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N′-dioxide–Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.

Catalytic asymmetric tandem carbonyl ylide formation/[4 + 3]-cycloaddition of β,γ-unsaturated α-ketoesters, aldehydes and α-diazoacetates was achieved by using a bimetallic rhodium(ii)/chiral N,N′-dioxide–Sm(iii) complex catalyst.  相似文献   

12.
An efficient palladium-catalyzed enantioselective carboamination reaction of N-Boc-O-homoallyl-hydroxylamines and N-Boc-pent-4-enylamines with aryl or alkenyl bromides was developed, delivering various substituted isoxazolidines and pyrrolidines in good yields with up to 97% ee. The reaction features mild conditions, general substrate scope and scalability. The obtained products can be transformed into chiral 1,3-aminoalcohol derivatives without erosion of chirality. The newly identified Xu-Phos ligand bearing an ortho-OiPr group is responsible for the good yield and high enantioselectivity.

The new chiral ligand (S,Rs)-Xu4 with ortho-OiPr showed good performance in the asymmetric carboamination reaction of N-Boc-O-homoallyl-hydroxylamines and N-Boc-pent-4-enylamines with aryl or alkenyl bromides.  相似文献   

13.
We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate. The Brønsted acid-catalyzed kinetic resolution–allylboration reaction sequence of the racemic reagent gave (Z)-δ-hydroxymethyl-anti-homoallylic alcohols with high Z-selectivities and enantioselectivities upon oxidative workup. In parallel, enantioconvergent pathways were utilized to synthesize chiral nonracemic 1,5-diols and α,β-unsaturated aldehydes with excellent optical purity.

We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate.  相似文献   

14.
A phosphite mediated stereoretentive C–H alkylation of N-alkylpyridinium salts derived from chiral primary amines was achieved. The reaction proceeds through the activation of the N-alkylpyridinium salt substrate with a nucleophilic phosphite catalyst, followed by a base mediated [1,2] aza-Wittig rearrangement and subsequent catalyst dissociation for an overall N to C-2 alkyl migration. The scope and degree of stereoretention were studied, and both experimental and theoretical investigations were performed to support an unprecedented aza-Wittig rearrangement–rearomatization sequence. A catalytic enantioselective version starting with racemic starting material and chiral phosphite catalyst was also established following our understanding of the stereoretentive process. This method provides efficient access to tertiary and quaternary stereogenic centers in pyridine systems, which are prevalent in drugs, bioactive natural products, chiral ligands, and catalysts.

N-Alkylpyridinium salt of chiral amines undergoes phosphite mediated stereoretentive migrations to generate chiral alkylpyridines. The role of phosphite on reactivity and stereoselectivity were examined to achieve a catalytic asymmetric version.  相似文献   

15.
Understanding and controlling molecular recognition mechanisms at a chiral solid interface is a continuously addressed challenge in heterogeneous catalysis. Here, the molecular recognition of a chiral peptide-functionalized metal–organic framework (MOF) catalyst towards a pro-chiral substrate is evaluated experimentally and in silico. The MIL-101 metal–organic framework is used as a macroligand for hosting a Noyori-type chiral ruthenium molecular catalyst, namely (benzene)Ru@MIL-101-NH-Gly-Pro. Its catalytic perfomance toward the asymmetric transfer hydrogenation (ATH) of acetophenone into R- and S-phenylethanol are assessed. The excellent match between the experimentally obtained enantiomeric excesses and the computational outcomes provides a robust atomic-level rationale for the observed product selectivities. The unprecedented role of the MOF in confining the molecular Ru-catalyst and in determining the access of the prochiral substrate to the active site is revealed in terms of highly face-specific host–guest interactions. The predicted surface-specific face differentiation of the prochiral substrate is experimentally corroborated since a three-fold increase in enantiomeric excess is obtained with the heterogeneous MOF-based catalyst when compared to its homogeneous molecular counterpart.

Understanding and controlling molecular recognition mechanisms at a chiral solid interface has been addressed in metal–organic framework catalysts for the asymmetric transfer hydrogenation reaction.  相似文献   

16.
Nanozymes as a newcomer in the artificial enzyme family have shown several advantages over natural enzymes such as their high stability in harsh environments, facile production on large scale, long storage time, low costs, and higher resistance to biodegradation. However, compared with natural enzymes, it is still a great challenge to design a nanozyme with high selectivity, especially high enantioselectivity. It is highly desirable and demanding to develop chiral nanozymes with high and on-demand enantioselectivity for practical applications. Herein, we present an unprecedented approach to construct chiral artificial peroxidase with ultrahigh enantioselectivity. Inspired by the structure of the natural enzyme horseradish peroxidase (HRP), we have constructed a series of stereoselective nanozymes (Fe3O4@Poly(AA)) by using the ferromagnetic nanoparticle (Fe3O4 NP) yolk as the catalytic core and amino acid-appended chiral polymer shell as the chiral selector. Among them, Fe3O4@Poly(d-Trp) exhibits the highest enantioselectivity. More intriguingly, their enantioselectivity will be readily reversed by replacing d-Trp with l-Trp. The selectivity factor is up to 5.38, even higher than that of HRP. Kinetic parameters, dialysis experiments, and molecular simulations together with activation energy reveal that the selectivity originates from the d-/l-Trp appended polymer shell, which can result in better affinity and catalytic activity to d-/l-tyrosinol. The artificial peroxidases have been used for asymmetric catalysis to prepare enantiopure d- or l-enantiomers. Besides, by using fluorescent labelled FITC-tyrosinolL and RhB-tyrosinolD, the artificial peroxidases can catalyze green or red fluorescent chiral tyrosinol to selectively label live yeast cells among yeast, S. aureus, E. coli and B. subtilis bacterial cells. This work opens a new avenue for better design of stereoselective artificial enzymes.

A yolk–shell stereoselective nanozyme is designed with a chiral selector. Nanozyme with D-/L-tryptophan possesses high selectivity towards D-/L-tyrosinol and can catalyze chiral tyrosinol to selectively label live yeast cells.  相似文献   

17.
Herein we report a nickel-catalyzed asymmetric reductive aryl-allylation of aryl iodide-tethered unactivated alkenes, wherein both acyclic allyl carbonates and cyclic vinyl ethylene carbonates can serve as the coupling partners. Furthermore, the direct use of allylic alcohols as the electrophilic allyl source in this reaction is also viable in the presence of BOC anhydride. Remarkably, this reaction proceeds with high linear/branched-, E/Z- and enantio-selectivity, allowing the synthesis of various chiral indanes and dihydrobenzofurans (50 examples) containing a homoallyl-substituted quaternary stereocenter with high optical purity (90–98% ee). In this reductive reaction, the use of pregenerated organometallics can be circumvented, giving this process good functionality tolerance and high step-economy.

A nickel-catalyzed reductive asymmetric aryl-allylation of tethered unactivated alkenes has been developed, providing diverse benzene-annulated cyclic compounds bearing a quaternary stereocenter with high regio-, E/Z- and enantio-selectivity.  相似文献   

18.
The key nucleophile was found to be neither an enamine nor an enol, but an enolate in the direct Michael reaction of α,β-unsaturated aldehydes and non-activated ketones catalyzed by two amine catalysts namely diphenylprolinol silyl ether and pyrrolidine. This is a rare example of an enolate from a ketone serving as a key intermediate in the asymmetric organocatalytic reaction involving secondary amine catalysts because the ketone enolates are generally generated using a strong base, and the enamine is a common nucleophile in this type of reaction.

The key nucleophile was found to be neither an enamine nor an enol, but an enolate in the direct Michael reaction of α,β-unsaturated aldehydes and non-activated ketones catalyzed by two amine catalysts namely diphenylprolinol silyl ether and pyrrolidine.  相似文献   

19.
An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies. In this protocol, a catalytic amount of additive, a halogenated salt, plays a crucial role in the success. Control experiments and theoretical studies disclosed that the four-membered ring transmetallation transition states which were stabilized by a halide anion are the key to yields and stereochemical outcomes.

An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies.  相似文献   

20.
Compared with the well-developed C–C and C–N axial chirality, the asymmetric synthesis of N–N axial chirality remains elusive and challenging. Herein we report the first atroposelective N-acylation reaction of quinazolinone type benzamides with cinnamic anhydrides for the direct catalytic synthesis of optically active atropisomeric quinazolinone derivatives. This reaction features mild conditions and a broad substrate scope and produces N–N axially chiral compounds with high yields and very good enantioselectivities. Besides, the synthetic utility of the protocol was proved by a large scale reaction, transformation of the product and the utilization of the product as an acylation kinetic resolution reagent. Moreover, DFT calculations provide convincing evidence for the interpretation of stereoselection.

A highly efficient atroposelective N-acylation reaction of quinazolinone type benzamides with cinnamic anhydrides for the direct catalytic synthesis of optically active atropisomeric quinazolinone derivatives was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号