首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pan  Yu  Wang  Ting-Yun  Yan  Xiao-Ming  Xu  Xiao-Wei  Zhang  Qi-Dong  Zhao  Bao-Lin  El Hamouti  Issam  Hao  Ce  He  Gao-Hong 《高分子科学》2018,36(1):129-138
The stability of anion exchange membranes(AEMs) is an important feature of alkaline exchange membrane fuel cells(AEMFCs), which has been extensively studied. However it remains a real challenge due to the harsh working condition. Herein, we developed a novel type of polysulfone-based AEMs with three modified 1,2-dimethylbenzimidazoliums containing different substitutes at C4-and C7-position. The results showed that the introduction of the substitutes could obviously improve the dimensional and alkaline stabilities of the corresponding membranes. The swelling ratios of resultant AEMs were all lower than 10% after water immersion. The membrane with 4,7-dimethoxy-1,2-dimethylbenzimidazolium group exhibited the highest alkaline stability. Only 9.2% loss of hydroxide conductivity was observed after treating the membrane in 1 mol·L~(-1) KOH solution at 80 °C for 336 h. Furthermore, the density functional theory(DFT) study on the three functional group models showed that the substitutes at C4-and C7-position affected the lowest unoccupied molecular orbital(LUMO) energies of the different 1,2-dimethylbenzimidazolium groups.  相似文献   

2.
A series of novel fluoropolymer anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate, and hexafluorobutyl methacrylate has been prepared. Fourier transform infrared (FT-IR) spectroscopy and elemental analysis techniques are used to study the chemical structure and chemical composition of the membranes. The water uptake, ion-exchange capacity (IEC), conductivity, methanol permeability, and chemical stability of the membranes are also determined. The membranes exhibit high anionic conductivity in deionized water at 65 °C ranging from 3.86×10(-2) S cm(-1) to 4.36×10(-2) S cm(-1). The methanol permeability coefficients of the membranes are in the range of 4.21-5.80×10(-8) cm(2) s(-1) at 65 °C. The novel membranes also show good chemical and thermal stability. An open-circuit voltage of 0.7 V and a maximum power density of 53.2 mW cm(-2) of alkaline direct methanol fuel cell (ADMFC) with the membrane C, 1 M methanol, 1 M NaOH, and humidified oxygen are achieved at 65 °C. Therefore, these membranes have great potential for applications in fuel cell systems.  相似文献   

3.
Here we present the first metal-cation-based anion exchange membranes (AEMs), which were synthesized by copolymerization and cross-linking of a norbornene monomer functionalized with a water-soluble bis(terpyridine)ruthenium(II) complex and dicyclopentadiene. Each ruthenium complex has two associated counteranions, unlike most ammonium- and phosphonium-based membranes with single cation-anion pairs. The resulting AEMs show anion conductivities and mechanical properties comparable to those of traditional quaternary-ammonium-based AEMs as well as good alkaline stability and methanol tolerance. These results suggest that metal-cation-based polymers hold promise as a new class of materials for anion-conducting applications.  相似文献   

4.
Anion exchange membranes with pyridinum groups and various pyridinium derivative groups were prepared from a copolymer membrane composed of chloromethylstyrene and divinylbenzene, and pyridine and pyridine derivatives. The anion exchange membranes obtained showed excellent electrochemical properties in electrodialysis. The transport numbers of sulfate ions, bromide ions, nitrate ions, and fluoride ions relative to chloride ions were evaluated in connection with the species of a substituent and the position of the substituent in the pyridinium groups. In general, when a hydrophilic substituent (methanol groups) existed at the 2-position of the pyridinium groups, nitrate ions and bromide ions, which are less hydrated, permeated through the membranes with difficulty, and sulfate ions permeated selectively through the membranes. On the other hand, when hydrophobic groups, for example, ethyl groups, existed at the 2-position of the pyridinium groups, bromide ions and nitrate ionspermeated selectively through the membranes and fluoride ions had difficulty permeating through the membranes. The carbon number of the alkyl chain of 4-alkyl pyridinium groups also affected permeation of nitrate ions and bromide ions due to the change in hydrophilicity of the membranes. Though the hydration of the anions and the species of the substituent at the 2-position of the pyridinium groups were related to selective permeation of the anion through the membranes, permeation of sulfate ions was not as sensitive to the hydrophilicity of the membranes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 49–58, 1998  相似文献   

5.
The anion exchange membranes (AEMs) with both high ionic conductivity and alkali stability are always the research focus of the AEM fuel cells. Here, a novel nonplanar polymer for AEMs manufacture, mPBI‐TP‐x‐R, with excellent hydroxide stability and satisfactory processability is reported for the first time. The serial mPBI‐TP‐x resins with steric hindrance were prepared by copolymerization among 3,3′,4,4′‐tetraaminobiphenyl, isophthalic acid and tetraphenyl‐terephthalic acid (TP) in different ratios under microwave condensation. The copolymers mPBI‐TP‐x were quaternized at N1/N3‐sites of benzimidazole unit in backbone with alkyl groups (R?CH3, C2H5, n‐C3H7, or n‐C4H9) to prepare soluble ionomers, and the corresponding membranes in hydroxyl ion form were prepared by a solution casting method and subsequent ion‐exchange process. The chemical structure of all membranes was characterized using FTIR and 1H NMR spectroscopy. The properties of ion exchange capacity, water uptake, swelling ratio, tensile strength, ionic conductivity, and alkaline stability were measured. Among the prepared membranes, the mPBI‐TP‐15%‐(n‐Bu) exhibited the excellent alkaline stability (only degradation ca. 5% under 1M NaOH aqueous solution at 60 °C for 800 h) and satisfactory OH? conductivity (46.66 mS/cm at 80 °C). The current research provides a useful exploration to commercial application of alkaline fuel cell. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1087–1096  相似文献   

6.
The water content, the ion exchange capacity, the transport number of counter-ion of the AMV and AMX anion exchange membranes were determined. The two-phase model (gel phase and interstitial phase) of structure microheterogeneity was validated by means of conductivity measurements. The chronopotentiometric results allowed us to affirm the overall surface homogeneity of the membranes. According to the two-phase model, the influence of the gel phase and the interstitial phase on the membrane permselectivity was discussed in detail. Majorities of co-ions exist in the interstitial phase, thus they have no influence on the transport of counter-ions in the gel phase. The determination of the KCl amount sorbed in the interstitial phase confirmed the existence of partition equilibrium between the interstitial phase and the external solution. Such partition equilibrium can be considered within the microheterogeneous model in order to represent the internal structure of the electromembranes.  相似文献   

7.
Novel self-crosslinked alkaline anion exchange membranes with high alkaline stability, excellent dimensional stability and extraordinary methanol resistance were synthesized successfully without using any catalyst or a separate crosslinker.  相似文献   

8.
The selective transport of ions has crucial importance in biological systems as well as modern‐day energy devices, such as batteries and fuel cells, and water purification membranes. Control over ion movement can be exerted by ligation, ion channel dimensions, solvation, and electrostatic interactions. Polyelectrolyte hydrogels can provide aligned pathways for counter ion transport but lack mechanical integrity, while polyelectrolyte membranes typically suffer from the absence of an ion transport channel network. To develop polymer membranes for improved ion transport, we present the design of a novel material that combines the advantages of aligned pathways found in polyelectrolyte hydrogel and mechanical robustness in conventional membranes. The ionic species were organized via controlled copolymerization of a quaternizable monomer. Additionally, dimensional stability was then incorporated through a cast/crosslinking method to lock in the network of connected cationic groups. This strategy resulted in dramatically enhanced ion transport, as characterized by ionic conductivities (>80 mS/cm for Cl, and ∼200 mS/cm for OH). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 618–625  相似文献   

9.
10.
11.
Poly(phenylene oxide) block and random copolymers are synthesized by oxidative polymerization of 2,6-dimethylphenol and 2,6-diphenylphenol for potential alkaline exchange membrane application. The copolymers are functionalized on the methyl substituted repeat units through a two-step process to produce pendent quaternary ammonium cationic groups. The amount of quaternary ammonium cations and the ion exchange capacity are quantified through titration measurements. Ionic conductivity of the copolymer membranes is measured by electrochemical impedance spectroscopy. Block copolymers show increased bromide conductivity at higher ion exchange capacities compared with the random copolymer analogs. The bromide conductivity for a block copolymer film with an ion exchange capacity of 1.27 mequiv/g reaches 26 mS/cm at 90 °C and 95% relative humidity. The hydroxide conductivity for the same film was measured to be 84 mS/cm at 80 °C and 95% relative humidity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1770–1778, 2013  相似文献   

12.
A novel poly(ether-imide)-based alkaline anion exchange membrane with no free base has been prepared and characterized for its ionic conductivity in water, which is a critical metric of its applicability in a liquid-fed direct methanol fuel cell. The poly(ether-imide)-based membranes were prepared by chloromethylation, quaternization and alkalization of commercial poly(ether-imide) and the derivatives were characterized by NMR. The chemical and thermal stabilities were investigated by measuring changes of ionic conductivities when the membranes were placed in various alkaline concentrations and temperatures for 24 h. The membranes were stable at all concentrations of KOH at room temperature, but not at elevated temperatures. The membranes were stable in 1.0 M KOH solution up to 80 °C without losing membrane integrity. The measured conductivity of the formed membrane ranged from 2.28 to 3.51 × 10−3 S/cm at room temperature. This preliminary study indicates that functionalized poly(ether-imide) has suitable conductivity suggesting that it can be used as an alkaline anion exchange membrane in fuel cell applications.  相似文献   

13.
Heterogeneous membranes of Fe(III)-Zr(IV), Cr(III)-Zr(IV) mixed hydrous oxides and one doped with Sn(II) ion have been prepared using polystyrene as a binding material. Functional properties like water content, porosity, swelling, electrolyte absorption and conductance of these membranes have been determined in various anionic forms and correlated with their electroanalytical selectivity.  相似文献   

14.
In this study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer with various quaternary ammonium cations attached with sulfonamide linkage. The degree of functionalization varied depending on the cation species, resulting in different ion exchange capacities (IECs), 0.33–0.72 meq g−1. There was evidence of polymer degradation when the films were exposed to hydroxide, and hence all membrane characterization was performed in the chloride form. Conductivity was dependent on cation species and IEC, Ea = 36–59 kJ mol−1. Diffusion of water through the membrane was relatively high 1.6 × 10−5 cm2 s−1 and indicated restriction over a range of diffusion times, 6–700 ms. Water uptake (WU) in the membranes was generally low and the hydration level varied based on cation species, λ = 6–11. Small-angle scattering experiments suggested ionic aggregation, 37–42 Å, independent of cation species but slight differences in long-range order with cation species. © 2012 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1761–1769, 2013  相似文献   

15.
The synthesis and the characterization of graft copolymers prepared from ozonized high density polyethylene (HDPE) are described. The powder of HDPE was treated with ozone in well defined conditions and then copolymerized with monomers, such as, acrylic acid (AA), N,N-dimethylamino-2 ethylmethacrylate (MADAME) and vinyl phosphonic acid (VPA). Cationic exchange membranes were prepared from the grafted copolymers of AA and VPA and anionic exchange membrane from the grafted copolymer of MADAME. The obtained copolymers were characterized by the grafting rate, FTIR spectroscopy, scaning electronic microscopy, thickness, exchange capacity and electrical resistance.  相似文献   

16.
Two porphyrin-cobaltacarborane conjugates and were prepared in high yields via a nucleophilic ring-opening reaction of . These novel boron-rich and fluorescent compounds have potential application as boron delivery agents for the boron neutron capture therapy of tumors.  相似文献   

17.
Click chemistry has attracted tremendous attention in polymer synthesis due to its high efficiency, considerable yield, and simple synthesis/work-up procedures. Among the various functional polymer materials prepared by click chemistry, anion exchange membrane (AEM) is a kind of polyelectrolyte which contains cations attached to the polymer skeleton. Click chemistry not only provides facile pathways for the preparation of AEMs but also generates diverse architectures of AEMs with robust performance. The commonly used click chemistry in AEMs consists of: (i) Diels-Alder reaction, (ii) thiol-ene, and (iii) Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). This review will focus on the advance of click chemistry in the preparation of AEMs, especially synthetic approaches for different AEMs and their corresponding application in energy-related fields, such as fuel cells, redox flow battery, electrodialysis, and so on.  相似文献   

18.
Using the preirradiation technique a kinetic study of the grafting of the 4-vinyl pyridine (V4P) and an aliphatic ammonium monomer (ALAM) onto the copolymer film of ethylene–tetrafluoroethylene (ETFE) has been performed. The influence of dose, temperature, and concentration of monomer, reticular agent, and inhibitor were investigated. The results are discussed on the basis of the interactions between monomer diffusibility and viscosity of the medium. The characteristics of some membranes were determined. Their applicability to the recovery of acid by dialysis is demonstrated.  相似文献   

19.
The use of partially quaternized, chloromethylated polystyrene as a covalent scavenger of cholate ion in aqueous media has been demonstrated. The ability of such polymers to scavenge organic anions by covalent as well as by ionic means has important implications in the areas of medicinal and environmental chemistry, which are briefly discussed.  相似文献   

20.
A series of crosslinked, ammonium‐functionalized, and partially fluorinated copolymers have been prepared and evaluated as anion exchange membranes. In order to investigate the effect of crosslinking on the membrane properties, precursor copolymers containing chloromethyl groups were crosslinked with various aliphatic diamines followed by quaternization with monoamines. Crosslinking was effective in lowering water absorbability at no expense of high hydroxide ion conductivity of the membranes. By tuning the degree of crosslinking (20 mol %) and crosslinker chain length (C6 and C8), the highest ion conductivity of 73 mS/cm (at 80°C in water) was achieved. Furthermore, alkaline stability of the membranes was also improved by the crosslinking; the remaining ion conductivity after the stability test (in 1 M potassium hydroxide at 80°C) was 8.2 mS/cm (after 1000 h) for the C6 crosslinked membrane and 1 mS/cm (after 500 h) for the uncrosslinked membrane, respectively. The ammonium groups attached with the crosslinkers seemed more alkaline stable than the uncrosslinked benzyltrimethylammonium groups, while the polymer main chain was intact under the harsh alkaline conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1059–1069  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号