首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ruthenium(II) and palladium(II) complexes [Ru(DMSO)(L)Cl2] and [Pd(L)Cl]Cl, where L = 2,6-bis(pyrazol-1-yl)pyridine (bpp) or 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (bdmpp) have been synthesized. All complexes were characterized by elemental analysis, IR, 1H NMR, UV-Vis, and cyclic voltammetry measurements.  相似文献   

2.
Two routes to 2,6-di(pyrazol-1-yl)-4-hydroxymethylpyridine (1) from 2,6-dihydroxy-isonicotinic acid, in four and six steps, are reported. Reaction of 1 with 48% HBr yields 2,6-di(pyrazol-1-yl)-4-bromomethylpyridine (2), which is a powerful precursor to a range of new tridentate ligands for transition metals functionalised at the pyridine ring. As a proof of principle, we describe the further elaboration of 2 to give two 2,6-di(pyrazol-1-yl)pyridines bearing nucleobase substituents, and the back-to-back ligand 1,2-bis[2,6-di(pyrazol-1-yl)pyrid-4-yl]ethane. Crystal structures of two of these new derivatives are presented.  相似文献   

3.
Manipulation of non-covalent metal–metal interactions allows the fabrication of functional metallosupramolecular structures with diverse supramolecular behaviors. The majority of reported studies are mostly designed and governed by thermodynamics, with very few examples of metallosupramolecular systems exhibiting intriguing kinetics. Here we report a serendipitous finding of platinum(ii) complexes serving as non-covalent crosslinkers for the fabrication of supramolecular DNA hydrogels. Upon mixing the alkynylplatinum(ii) terpyridine complex with double-stranded DNA in aqueous solution, the platinum(ii) complex molecules are found to first stack into columnar phases by metal–metal and π–π interactions, and then the columnar phases that carry multiple positive charges crosslink the negatively charged DNA strands to form supramolecular hydrogels with luminescence properties and excellent processability. Subsequent platinum(ii) intercalation into DNA competes with the metal–metal and π–π interactions at the crosslinking points, switching on the spontaneous gel-to-sol transition. In the case of a chloro (2,6-bis(benzimidazol-2′-yl)pyridine)platinum(ii) complex, with [Pt(bzimpy)Cl]+ serving as a non-covalent crosslinker where the metal–metal and π–π interactions outcompete platinum(ii) intercalation, the intercalation-driven gel-to-sol transition pathway is blocked since the gel state is energetically more favorable than the sol state. Interestingly, the ligand exchange reaction of the chloro ligand in [Pt(bzimpy)Cl]+ with glutathione (GSH) has endowed the complexes with enhanced hydrophilicity, decreasing the planarity of the complexes, and turning off the metal–metal and π–π interactions at the crosslinking points, leading to GSH-triggered hydrogel dissociation.

We report a serendipitous finding of platinum(ii) complexes serving as non-covalent crosslinkers for the fabrication of supramolecular DNA hydrogels.  相似文献   

4.
The iron(ii) salt [Fe(bpp)2](isonicNO)2·HisonicNO·5H2O (1) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; isonicNO = isonicotinate N-oxide anion) undergoes a partial spin crossover (SCO) with symmetry breaking at T1 = 167 K to a mixed-spin phase (50% high-spin (HS), 50% low-spin (LS)) that is metastable below T2 = 116 K. Annealing the compound at lower temperatures results in a 100% LS phase that differs from the initial HS phase in the formation of a hydrogen bond (HB) between two water molecules (O4W and O5W) of crystallisation. Neutron crystallography experiments have also evidenced a proton displacement inside a short strong hydrogen bond (SSHB) between two isonicNO anions. Both phenomena can also be detected in the mixed-spin phase. 1 undergoes a light-induced excited-state spin trapping (LIESST) of the 100% HS phase, with breaking of the O4W⋯O5W HB and the onset of proton static disorder in the SSHB, indicating the presence of a light-induced activation energy barrier for proton motion. This excited state shows a stepped relaxation at T1(LIESST) = 68 K and T2(LIESST) = 76 K. Photocrystallography measurements after the first relaxation step reveal a single Fe site with an intermediate geometry, resulting from the random distribution of the HS and LS sites throughout the lattice.

A proton migration across a short strong hydrogen bond can be triggered by spin crossover of a remote Fe2+ cation, with the onset of a photoinduced activation energy barrier for proton motion at low temperatures.  相似文献   

5.
The photomagnetic properties of the following iron(II) complexes have been investigated: [Fe(L1)2][BF4]2, [Fe(L2)2][BF4]2, [Fe(L2)2][ClO4]2, [Fe(L3)2][BF4]2, [Fe(L3)2][ClO4]2 and [Fe(L4)2][ClO4]2 (L1 = 2,6-di{pyrazol-1-yl}pyridine; L2 = 2,6-di{pyrazol-1-yl}pyrazine; L3 = 2,6-di{pyrazol-1-yl}-4-{hydroxymethyl}pyridine; and L4 = 2,6-di{4-methylpyrazol-1-yl}pyridine). Compounds display a complete thermal spin transition centred between 200-300 K, and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. The T(LIESST) relaxation temperature of the photoinduced high-spin state for each compound has been determined. The presence of sigmoidal kinetics in the HS --> LS relaxation process, and the observation of LITH hysteresis loops under constant irradiation, demonstrate the cooperative nature of the spin transitions undergone by these materials. All the compounds in this study follow a previously proposed linear relation between T(LIESST) and their thermal spin-transition temperatures T(1/2): T(LIESST) = T(0)- 0.3T(1/2). T(0) for these compounds is identical to that found previously for another family of iron(II) complexes of a related tridentate ligand, the first time such a comparison has been made. Crystallographic characterisation of the high- and low-spin forms, the light-induced high-spin state, and the low-spin complex [Fe(L4)2][BF4]2, are described.  相似文献   

6.
The molecular design of spin-crossover complexes relies on controlling the spin state of a transition metal ion by proper chemical modifications of the ligands. Herein, the first N,N’-disubstituted 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) are reported that, against the common wisdom, induce a spin-crossover in otherwise high-spin iron(II) complexes by increasing the steric demand of a bulky substituent, an ortho-functionalized phenyl group. As N,N’-disubstituted 3-bpp complexes have no pendant NH groups that make their spin state extremely sensitive to the environment, the proposed ligand design, which may be applicable to isomeric 1-bpp or other families of popular bi-, tri- and higher denticity ligands, opens the way for their molecular design as spin-crossover compounds for future breakthrough applications.  相似文献   

7.
The effect of pressure on the dinuclear spin crossover material [{Fe(bpp)(NCS)(2)}(2)(4,4'-bipy)]·2MeOH (where bpp = 2,6-bis(pyrazol-3-yl)pyridine and 4,4'-bipy = 4,4'-bipyridine, 1) has been investigated with single crystal X-ray diffraction and Raman spectroscopy using diamond anvil cell techniques. The very gradual pressure-induced spin crossover occurs between 7 and 25 kbar, and shows no evidence of crystallographic phase transitions. The pressure-induced spin transition leads to a complete LS state which is not thermally accessible. This structural evolution under pressure is in stark contrast to the previously reported thermal spin crossover behaviour, in which a symmetry-breaking, purely structural phase transition results in only partial conversion to the low spin state. This observation is attributed to the symmetry-breaking phase transition becoming unfavourable under pressure.  相似文献   

8.
Bistable spin-crossover (SCO) complexes that undergo abrupt and hysteretic (ΔT1/2) spin-state switching are desirable for molecule-based switching and memory applications. In this study, we report on structural facets governing hysteretic SCO in a set of iron(II)-2,6-bis(1H-pyrazol-1-yl)pyridine) (bpp) complexes – [Fe(bpp−COOEt)2](X)2 ⋅ CH3NO2 (X=ClO4, 1 ; X=BF4, 2 ). Stable spin-state switching – T1/2=288 K; ΔT1/2=62 K – is observed for 1 , whereas 2 undergoes above-room-temperature lattice-solvent content-dependent SCO – T1/2=331 K; ΔT1/2=43 K. Variable-temperature single-crystal X-ray diffraction studies of the complexes revealed pronounced molecular reorganizations – from the Jahn-Teller-distorted HS state to the less distorted LS state – and conformation switching of the ethyl group of the COOEt substituent upon SCO. Consequently, we propose that the large structural reorganizations rendered SCO hysteretic in 1 and 2 . Such insights shedding light on the molecular origin of thermal hysteresis might enable the design of technologically relevant molecule-based switching and memory elements.  相似文献   

9.
The influence of lattice water in the magnetic properties of spin-crossover [Fe(bpp)2]X2.nH2O salts [bpp = 2,6-bis(pyrazol-3-yl)pyridine] is well-documented. In most cases, it stabilizes the low-spin state compared to the anhydrous compound. In other cases, it is rather the contrary. Unraveling this mystery implies the study of the microscopic changes that accompany the loss of water. This might be difficult from an experimental point of view. Our strategy is to focus on some salts that undergo a nonreversible dehydration-hydration process without loss of crystallinity. By comparison of the structural and magnetic properties of original and rehydrated samples, several rules concerning the role of water at the microscopic level can be deduced. This paper reports on the crystal structure, thermal studies, and magnetic properties of [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1), [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O.0.5MeOH (2), and [Fe(bpp)2][Cr(phen)(ox)2]2.5.5H2O.2.5MeOH (3). Salt 1 contains both high-spin (HS) and low-spin (LS) Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 353 K and T1/2 upward arrow = 369 K. Rehydration affords the dihydrate [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1r) with 100% HS Fe2+ sites. Salt 2 also contains both HS and LS Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 343 K and T1/2 upward arrow = 348 K. Rehydration affords [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O (2r) with 72% Fe2+ sites in the LS configuration. The structural, magnetic, and thermal properties of these rehydrated compounds 1r and 2r are also discussed. Finally, 1 has been dehydrated and resolvated with MeOH to give [Fe(bpp)2][Cr(bpy)(ox)2]2.MeOH (1s) with 33% HS Fe2+ sites. The influence of the guest solvent in the Fe2+ spin state can anticipate the future applications of these compounds in solvent sensing.  相似文献   

10.
The spin crossover salt [Fe(bpp)2](isonicNO)2⋅ 2.4 H2O ( 1 ⋅2.4 H2O) (bpp=2,6-bis(pyrazol-3-yl)pyridine; isonicNO=isonicotinate N-oxide anion) exhibits a very abrupt spin crossover at T1/2=274.4 K. This triggers a supramolecular linkage (H-bond) isomerization that responds reversibly towards light irradiation or temperature change. Isotopic effects in the thermomagnetic behavior reveal the importance of hydrogen bonds in defining the magnetic state. Further, the title compound can be reversibly dehydrated to afford 1 , a material that also exhibits spin crossover coupled to H-bond isomerization, leading to strong kinetic effects in the thermomagnetic properties.  相似文献   

11.
The temperature of spin-crossover in [Fe(3-bpp)(2)][BF(4)](2) (3-bpp = 2,6-di{pyrazol-3-yl}pyridine) tends to increase in associating solvents. In particular, T(?) shifts to 60-70 K higher temperature in water compared to organic solvents.  相似文献   

12.
In this paper,it was found that Ru(H2bpp)2(PF6)2(H2bpp = 2,6-bis(pyrazol-3-yl)pyridine) complex had excellent electrochemical activity at the carbon paste electrode in the buffer solution of Tris-HCl(pH 7.0) with a couple reversible redox peaks at 0.296 V and 0.348 V,respectively.Voltammetry was used to investigate the electrochemical behavior of Ru(H2bpp)2(PF62 and the interaction between Ru(H2bpp)2(PF62 and bovine serum albumin(BSA).In the present of BSA,the oxidation peak current of Ru(H2bpp)2(PF62 complex was decreased linearly and the decrease of oxidation peak current of Ru(H2bpp)2(PF62 is proportional to BSA concentration from 0.1 to 2.5 mg/L with a detection limit 0.02 mg/L.  相似文献   

13.
Russian Journal of Coordination Chemistry - The direct template reactions afford the cobalt(II) complexes (I–III) with the hydroxy- and acetyl-substituted 2,6-bis(pyrazol-3-yl)pyridine...  相似文献   

14.
Derivatives of 2,6-di(pyrazol-1-yl)pyridine and 2,6-di(pyrazol-3-yl)pyridine have been used as ligands for 15 years, and have both advantages and disadvantages in this regard compared to the much more widely investigated terpyridines. A review of the synthesis of these and some related ligand types, and a survey of their complex chemistry, are presented. Highlights of the latter include luminescent lanthanide compounds for biological sensing, and iron complexes showing unusual thermal and photochemical spin-state transitions.  相似文献   

15.
Co-crystallization of the prominent Fe(ii) spin-crossover (SCO) cation, [Fe(3-bpp)2]2+ (3-bpp = 2,6-bis(pyrazol-3-yl)pyridine), with a fractionally charged TCNQδ radical anion has afforded a hybrid complex [Fe(3-bpp)2](TCNQ)3·5MeCN (1·5MeCN, where δ = −0.67). The partially desolvated material shows semiconducting behavior, with the room temperature conductivity σRT = 3.1 × 10−3 S cm−1, and weak modulation of conducting properties in the region of the spin transition. The complete desolvation, however, results in the loss of hysteretic behavior and a very gradual SCO that spans the temperature range of 200 K. A related complex with integer-charged TCNQ anions, [Fe(3-bpp)2](TCNQ)2·3MeCN (2·3MeCN), readily loses the interstitial solvent to afford desolvated complex 2 that undergoes an abrupt and hysteretic spin transition centered at 106 K, with an 11 K thermal hysteresis. Complex 2 also exhibits a temperature-induced excited spin-state trapping (TIESST) effect, upon which a metastable high-spin state is trapped by flash-cooling from room temperature to 10 K. Heating above 85 K restores the ground-state low-spin configuration. An approach to improve the structural stability of such complexes is demonstrated by using a related ligand 2,6-bis(benzimidazol-2′-yl)pyridine (bzimpy) to obtain [Fe(bzimpy)2](TCNQ)6·2Me2CO (4) and [Fe(bzimpy)2](TCNQ)5·5MeCN (5), both of which exist as LS complexes up to 400 K and exhibit semiconducting behavior, with σRT = 9.1 × 10−2 S cm−1 and 1.8 × 10−3 S cm−1, respectively.

Co-crystallization of the cationic complex [Fe(3-bpp)2]2+ with fractionally charged TCNQδ anions (0 < δ < 1) affords semiconducting spin-crossover (SCO) materials. The abruptness of SCO is strongly dependent on the interstitial solvent content.  相似文献   

16.
[Fe(bpp)2][Pt(ox)2].H2O (with bpp=2,6-bis(pyrazol-3-yl)-pyridine and ox=oxalate) was prepared, and its spin crossover behavior was characterized. The two-step spin transition behavior changes over several cycles. The original behavior is restored when the sample is allowed to relax for a week. Furthermore, the ST exhibits a strong dependence on the heating and cooling rate. Heating the compound at 1 K/min leads to a spin transition with a third step and a second plateau at gammaHS approximately 0.8. Quenching the sample to 77 K also affects the spin transition behavior. The kinetic relaxation is followed after quenching and after light-induced excited spin state trapping experiments.  相似文献   

17.
The Ru(II) complexes [Ru(bpp)(dcbpy)Cl](+) (1), [Ru(tcbpp)(bpy)Cl](+) (2), and [Ru(tc'bpp)(bpy)Cl](+) (3) (bpp = 2,6-bis(N-pyrazolyl)pyridine, dcbpy = 4,4'-dicarboxyl-bipyridine, bpy = bipyridine, tcbpp = 4-carboxyl-2,6-bis(2-carboxyl-N-pyrazolyl)pyridine, tc'bpp = 4-carboxyl-2,6-bis(4-carboxyl-N-pyrazolyl)pyridine) are studied theoretically using density functional theory (DFT) techniques to explore their properties as dye in a solar cell. The calculated geometry structure and absorption spectrum of 1 are consistent with its experimental results. The calculation results indicate which sites the COOH groups attach to can significantly influence the electronic structure of the complex. By migrating the COOH groups from the bpy ligand in 1 to bpp ligand in 2 and 3, the nature of LUMO changes from bpy-localized to bpp dominated. The calculated low-lying absorptions at λ > 370 nm of the three complexes are categorized as metal-to-ligand charge-transfer (MLCT) transitions and the transition terminates at the orbital populated by the COOH appended ligand. The atomic spin density analysis also indicates that the ligand which is modified by the COOH groups is the ideal spot for the captured electron to situate. It can be predicted that the performance of 2 and 3 in the dye-sensitized solar cell can be enhanced as compared with 1.  相似文献   

18.
This paper presents a 10-step synthetic route for the preparation of a series of new back-to-back coupled 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligands (L0-L3) decorated with tetraoctyl chains. Ligand L1 self-assembles with Zn(2+) ion to form a highly soluble metallo-supramolecular polymer 1 with M(n) ~ 9600 g/mol. To demonstrate the processability of polymer 1, by following a "top-down" approach periodic one-dimensional fluorescent microstripes were fabricated on a silica substrate.  相似文献   

19.
The electronic structures of [Cu(terpy)(2)](2+) and [Cu(bpp)(2)](2+) (bpp = 2,6-di[pyrazol-1-yl]pyridine) are different, when doped into [M(bpp)(2)][BF(4)](2) (M(2+) = Fe(2+) or Zn(2+)). The [Cu(terpy)(2)](2+) dopant is a typical pseudo-Jahn-Teller elongated copper(II) center. However, the [Cu(bpp)(2)](2+) sites show EPR spectra consistent with a tetragonally compressed {d(z(2))}(1) configuration.  相似文献   

20.
Six nickel(II) complexes, using azide and thiocyanate ions, have been synthesized from bis-2,6(pyrazol-1-yl)pyridine (pp) and some methyl derivatives, 2-(3,5-dimethyl(pyrazol-1-yl)-6-(pyrazol-1-yl)pyridine (app) and bis-2,6(3,5-dimethyl(pyrazol-1-yl) pyridine (dmpp) in non-aqueous media. The complex structures were analyzed using elemental analysis, IR spectroscopy and thermogravimetry. Appropriate crystals of complex, containing azide [Nipp(N3)2]·MeOH (I) and thiocyanate [Nidmpp(SCN)2·MeOH] (VI) were prepared and the molecular structures determined using X-ray diffraction. Complex I was seen to be dinuclear as stated in literature, space group P21/n, monoclinic, a=10.503, b=10.681, c=13.291 Å, β=106.56° and Z=2 whereas complex VI was found to be mononuclear, space group P21/n, monoclinic, a=8.646, b=12.614, c=20.697 Å, β=97.18° and Z=2. The Ni(II) coordination in both complexes were octahedral. Thermogravimetric studies showed azide containing structures to resemble the characteristics of explosive materials. Coordinative MeOH were seen to leave the structure in thiocyanate containing complexes, followed by irregular degradation above 300°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号