首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past few years, ionic liquid-based aqueous biphasic systems have become the subject of considerable interest as a promising technique for the extraction and purification of several macro/biomolecules. Aiming at developing guidelines for more benign and efficient extraction processes, phase diagrams for aqueous biphasic systems composed of ionic liquids and inorganic/organic salts are here reported. Several combinations of ionic liquid families (imidazolium, pyridinium, phosphonium, quaternary ammonium and cholinium) and salts [potassium phosphate buffer (KH2PO4/K2HPO4 at pH 7), potassium citrate buffer (C6H5K3O7/C6H8O7 at pH 5, 6, 7 and 8) and potassium carbonate (K2CO3 at pH ∼13)] were evaluated to highlight the influence of the ionic liquid structure (cation core, anion and alkyl chain length), the pH and the salt nature on the formation of aqueous biphasic systems. The binodal curves and respective tie-lines reported for these systems were experimentally determined at (298 ± 1) K. In general, the ability to promote the aqueous biphasic systems formation increases with the pH and alkyl chain length. While the influence of the cation core and anion nature of the ionic liquids on their ability to form aqueous biphasic systems closely correlates with ionic liquids capacity to be hydrated by water, the effect of the different salts depends of the ionic liquid nature and salt valency.  相似文献   

2.
In the present work, (liquid + liquid) equilibrium data have been determined experimentally for aqueous two-phase systems formed by the imidazolium ionic liquids of [Cnmim][CH3COO] (n = 4, 6, 8) and inorganic salts of K3PO4, K2HPO4, and K2CO3 at T = 298.15 K. Combined with available data in the literature, the effect of alkyl chain length of cations, type of anions of the ionic liquids, and nature of the inorganic salts were examined on the binodal curves of the systems. Then the binodal curves were fitted to a four-parameter empirical equation, and the tie-lines were described by the Othmer–Tobias and Bancroft equations. In addition, the extraction capacity of the {[Cnmim][CH3COO] (n = 4, 6, 8) + K3PO4} aqueous two-phase systems was evaluated through their application to the extraction of l-tryptophan. The high extraction efficiency suggests that these aqueous two-phase systems are feasible to be used in the extraction and separation process.  相似文献   

3.
The specific effects of K3PO4, K2CO3, Na2CO3, and (NH4)2SO4, as high charge-density inorganic salts and thus inducers of the formation of aqueous biphasic systems (ABS) containing several ethyl-methylimidazolium alkylsulfate ionic liquids, C2MIM CnSO4 (n = 2, 4, 6, or 8), have been assessed at T = 298.15 K. The results are analyzed in the light of the Hofmeister series. The influence of different alkyl chain lengths in the anion, together with the ability of the selected inorganic salts to induce the formation of ABS, is discussed. Phase diagrams have been determined through turbidimetry, including tie lines assignments from mass phase ratios according to the lever – arm rule. The Merchuck equation was satisfactorily used to correlate the solubility curve.  相似文献   

4.
The Gibbs free energy of transfer of a suitable hydrophobic probe can be regarded as a measure of the relative hydrophobicity of the different phases. The methylene group (CH2) can be considered hydrophobic, and thus be a suitable probe for hydrophobicity. In this work, the partition coefficients of a series of five dinitrophenylated-amino acids were experimentally determined, at 23 °C, in three different tie-lines of the biphasic systems: (UCON + K2HPO4), (UCON + potassium phosphate buffer, pH 7), (UCON + KH2PO4), (UCON + Na2HPO4), (UCON + sodium phosphate buffer, pH 7), and (UCON + NaH2PO4). The Gibbs free energy of transfer of CH2 units were calculated from the partition coefficients and used to compare the relative hydrophobicity of the equilibrium phases. The largest relative hydrophobicity was found for the ATPS formed by dihydrogen phosphate salts.  相似文献   

5.
(Liquid + liquid) equilibria for {1-benzyl-3-methylimidazolium chloride ([BzMIM]Cl) or 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl) + inorganic salts (potassium phosphate K3PO4, potassium carbonate K2CO3, or dipotassium hydrogen phosphate K2HPO4) + H2O} aqueous biphasic systems (ABSs) are presented at T = 298.15 K. An empirical equation was used to correlate the binodal data. The experimental tie lines were appropriately correlated by the Othmer–Tobias and Brancroft empirical equations. The influence of the selected inorganic salts in the phase segregation was investigated by means the calculated effective excluded volume (EEV) and Setschenow-type equation. The salting-out ability of salts was also evaluated in terms of the Gibbs energy of hydration of salt (ΔGhyd) and assessed with EEV values.  相似文献   

6.
During the last years, the extraction of biomolecules and chemicals by means of Aqueous Biphasic Systems (ABS) has triggered a renewed interest, making it necessary to characterize fully the solubility data of this kind of system. In this study, two surfactants belonging to Triton X series (Triton X-100 and Triton X-102) are proposed as candidates to form ABS, by adding different potassium-based salts (K3PO4, K2HPO4, K2CO3, K2S2O3 and K2SO3) at T = 298.15 K. Several equations were used to fit the solubility data which were previously obtained by means of the cloud point method. The different phase forming capacities were analyzed in the light of the Hofmeister series, the Effective Excluded Volume (EEV) theory and the molar Gibbs free energy of hydration (ΔhydG). The Othmer–Tobias equation was proposed to correlate the tie-line data.  相似文献   

7.
The salting out potential of potassium-based inorganic salts was assessed in aqueous solutions of two non-ionic surfactants from the Tween family. New solubility data of the systems {surfactant (Tween 20/Tween 80) + inorganic salt (K3PO4/K2CO3/K2HPO4/K2S2O3/K2SO3) + H2O} were experimentally ascertained at T = 298.15 K and these data were correlated by means of several three and four parameters empirical equations. Tie-line data were determined for the aqueous ternary systems and Ohtmer-Tobias and Bancroft equations have been proposed to correlate these data. The phase segregation effect of the proposed salts was investigated and compared with the sequence indicated by the Hofmeister series and the molar Gibbs energy of hydration (ΔhydG) data.  相似文献   

8.
The solubilities of ionic liquids in the ternary systems (ionic liquid + H2O + inorganic salt) were reported at 298.15 K and atmospheric pressure. The examined ionic liquids are [C4mim][PF6] (1-n-butyl-3-methylimidazolium hexafluorophosphate), [C8mim][PF6] (1-n-octyl-3-methylimidazolium hexafluorophosphate), and [C8mim][BF4] (1-n-octyl-3-methylimidazolium tetrafluoroborate). The examined inorganic salts are the chloride-based salts (sodium chloride, lithium chloride, potassium chloride, and magnesium chloride) and the sodium-based salts (sodium thiocyanate, sodium nitrate, sodium trifluoroacetate, sodium bromide, sodium iodide, sodium perchlorate, sodium acetate, sodium hydroxide, sodium dihydrogen phosphate, sodium phosphate, sodium tetrafluoroborate, sodium sulfate, and sodium carbonate). The effects of the cations and the anions of the ionic liquids and of the inorganic salts on the solubility of the ionic liquids in the ternary solutions were systematically compared and discussed.  相似文献   

9.
The partitioning behavior of l-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H2O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH2PO4), di-sodium hydrogen phosphate (Na2HPO4) and tri-sodium phosphate (Na3PO4). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH°, ΔS° and ΔG°) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na3PO4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.  相似文献   

10.
Partitioning in aqueous biphasic systems (ABS) is widely recognized today as a rapid, gentle, and highly efficient technique for the separation of soluble as well as particulate biomaterials. This technique has gained increasing attention as the separation method of choice in biotechnology. In recent years, a new approach has been proposed based on the use of ionic liquids (ILs) as adjuvants for the separation and purification of bio-molecules using polymer-based ABS. In this regard, the influence of IL 1-butyl-3-methylimidazolium bromide ([C4mim]Br) on the phase behavior and extraction capability of {PEG 600 + tri-potassium citrate (K3C6H5O7)} ABS for l-tyrosine (Tyr) is investigated here. For this purpose, phase diagrams and the liquid–liquid equilibrium (LLE) data for the {PEG 600 + K3C6H5O7} ABS with the addition of small quantities of IL were determined at T = 298.15 K. It was found that, for the studied polymer-based ABS, the addition of 5 wt% of [C4mim]Br to ABS caused the expansion of two-phase area in the salt-rich region; while, for the PEG-rich region no change was observed. The partition coefficients of l-tyrosine (KTyr) within the studied system were determined at T = 298.15 K. The results obtained indicate that the addition of small quantities of [C4mim]Br to the {PEG 600 + K3C6H5O7} ABS could enhance the extraction efficiency for l-tyrosine. In addition, the experimental data are correlated using the NRTL model. The comparisons between the correlation and the experimental data reveal a good agreement.  相似文献   

11.
During recent last years, outstanding properties of ionic liquids such as low melting point, large liquid range and negligible volatility have turned them into possible volatile organic solvents replacers to break alcohol-alkane azeotropic mixtures. On this basis, two ionic liquids, butyltrimethylammoniumbis(trifluoromethylsulfonyl)imide, [BTMA][NTf2], and tributylmethylammoniumbis(trifluoromethylsulfonyl)imide, [TBMA][NTf2], were studied through ternary liquid+liquid equilibrium (LLE) of {alkane(1) + alcohol (2) + IL(3)} at T = 298.15 K and atmospheric pressure in order to consider the effect of ionic liquid cation alkyl chain length on the extraction process.The ILs capability as azeotrope breakers was determined by the calculation of parameters such as solute distribution ratio, β, and selectivity, S and this capability was compared with other bis (trifluoromethylsulfonyl)imide based ionic liquids from literature. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations. Finally, the experimental LLE were correlated by the Non Random Two Liquid (NRTL) thermodynamic model.  相似文献   

12.
A quaternary (liquid + liquid) equilibrium study was performed to focus attention on the interaction parameters between poly-N-vinylcaprolactam (PVCL) and poly-ethylene glycol (PEG) as well as between other species. At first, the new experimental data of (liquid + liquid) equilibria for aqueous two-phase systems containing PEG, KH2PO4, and PVCL at T = 303.15 K have been determined. Then the Flory–Huggins theory with two electrostatic terms (the Debye–Huckel and the Pitzer–Debye–Huckel equations) has been generalized to correlate the phase behavior of the quaternary system. Good agreement has been found between experimental and calculated data from both models especially from the Pitzer–Debye–Huckel equation.Also an effort was done to compare the effect of temperature as well as addition of PVCL on the binodal curves of PEG, KH2PO4, and water. The effect of the type of salt on the binodals has been also studied, and the salting out power of the salts has been determined.  相似文献   

13.
The ternary (liquid + liquid) equilibrium (LLE) data for mixtures of dodecane (C12H26) and ethanol with ionic liquids 1,3-dimethylimidazolium methylsulfate [Mmim][MeSO4], 1-ethyl-3-methylimidazolium methylsulfate, [Emim][MeSO4] and 1-butyl-3-methylimidazolium methylsulfate, [Bmim][MeSO4], were studied at T = 298.15 K and 0.101 MPa. The selectivity and solute distribution coefficient ratios determined from the data were used to examine the possibility of using these ionic liquids for extraction of ethanol from dodecane. The temperature dependency was investigated by measuring the LLE data for {dodecane + ethanol + [Mmim][MeSO4]} at T = 313.15 K and 0.101 MPa. The Othmer–Tobias and Hand equations were used to test the consistency of the tie-line data. The tie-line data were correlated with the Non-Random Two Liquid (NRTL) equation which provided a good model and representation for the experimental results.  相似文献   

14.
The ionic liquid 1-ethyl-3-methylpyridinium ethylsulfate, [EMpy][ESO4], was studied for the separation of benzene from aliphatic hydrocarbons (octane or nonane) by solvent extraction through the determination of the (liquid + liquid) equilibrium (LLE) of the ternary systems: {octane (1) + benzene (2) + [EMpy][ESO4] (3)} and {nonane (1) + benzene (2) + [EMpy][ESO4] (3)} at T = (283.15 and 298.15) K and atmospheric pressure. Binodal curves were determined using the “cloud point” method, and tie-line compositions were obtained by density measurements. The values of selectivity and distribution coefficient, derived from the tie-line data, were used to decide if this ionic liquid can be used as potential solvent for the separation of benzene from aliphatic hydrocarbons using liquid extraction. These results were analyzed and compared to those previously reported for the systems {hexane + benzene + [EMpy][ESO4]} and {heptane + benzene + [EMpy][ESO4]}. The experimental results show that this ionic liquid is suitable for the extraction of benzene from mixtures containing octane and nonane. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations. The experimental results for the ternary systems were well correlated with the NRTL model. No literature data were found for the mixtures discussed in this paper.  相似文献   

15.
Binary electrolytes composed of ionic liquids and boric esters were prepared by studying compatibility between various combinations of such systems. The study showed that out of various combinations of ionic liquids/boric esters, only TFSI anion (or FSI anion) based ionic liquids/mesityldimethoxyborane (MDMB) systems were found to be miscible. After equimolar amount of lithium salts was added to ionic liquids, the resulting solution showed high ionic conductivity that was comparable to those for ionic liquids. The lithium transference number (tLi +) of these systems at room temperature was found to be very high. A maximum tLi + of 0.93 was observed for a binary mixture of AMImFSI [1-allyl-3-methylimidazolium bis(fluorosulfonyl)imide]/MDMB. Further, this binary mixture as electrolyte in Li/electrolyte/Si cell showed good reversible lithiation-delithiation with > 2500 mAh/g of delithiation specific capacity.  相似文献   

16.
Quaternary (liquid + liquid) equilibrium (LLE) data of the aqueous two-phase poly (ethylene glycol), poly (N,N-dimethylacrylamide-t-butylacrylamide) with abbreviation name poly (DMAM–TBAM) as a hydrophobic association water-soluble copolymer and KH2PO4 has been determined experimentally at T = 338.15 K. Furthermore, the generalized Flory–Huggins theory with two electrostatic terms (the Debye–Hückel and Pitzer–Debye–Hückel) was used for correlation of the phase behavior of the quaternary system and the interaction parameters between all species were calculated.It was found that addition of poly (DMAM–TBAM) copolymer as well as changing the temperature can shift the binodal curves of aqueous two-phase systems containing polyethylene glycol (PEG) and salt. Also, the phase behavior of the DMAM–TBAM copolymer with some salts containing sodium chloride, ammonium hydrogen phosphate, potassium hydrogen phosphate, and sodium carbonate were studied experimentally at T = 338.15 K and the effect of the salt type on the their binodal curves was determined.  相似文献   

17.
The current understanding of the molecular mechanisms involved in the bioinspired formation of silica structures laid foundation for investigating the potential of the S-layer protein SbpA from Lysinibacillus sphaericus CCM 2177 as catalyst, template and scaffold for the generation of novel silica architectures. SbpA reassembles into monomolecular lattices with square (p4) lattice symmetry and a lattice constant of 13.1 nm. Silica layers on the S-layer lattice were formed using tetramethoxysilane (TMOS) and visualized by transmission electron microscopy. In situ quartz crystal microbalance with dissipation monitoring (QCM-D) measurements showed the adsorption of silica in dependence on the presence of phosphate in the silicate solution and on the preceding chemical modification of the S-layer. An increased amount of precipitated silica could be observed when K2HPO4/KH2PO4 was present in the solution (pH 7.2). Further on, independent of the presence of phosphate the silica deposition was higher on S-layer lattices upon activation of their carboxyl groups with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) compared to native S-layers or EDC treated S-layers when the activated carboxyl groups were blocked with ethylene diamine (EDA). Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy revealed the formation of an amorphous silica gel (SiO2)x·yH2O on the S-layer. The silica surface concentrations on the S-layer was 4 × 10?9 to 2 × 10?8 mol cm?2 depending on the modification of the protein layer and corresponded to 4–21 monolayers of SiO2.  相似文献   

18.
Electrochemical measurements were made on (H2O + NaBr + K3PO4 + glycine) mixtures at T = 298.15 K by using ion selective electrodes. The mean ionic activity coefficients of NaBr at molality 0.1 were determined at five K3PO4 molalities (0.01, 0.03, 0.05, 0.07, and 0.1) mol · kg−1. The activity coefficients of glycine were evaluated from mean ionic activity coefficients of NaBr. The modified Pitzer equation was used to model the experimental data.  相似文献   

19.
Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.  相似文献   

20.
A new layered compound, K4Mn3(HPO4)4(H2PO4)2 (1), has been synthesized under hydrothermal conditions. It crystallizes in the monoclinic space group P21/n with a = 8.874(2) Å, b = 6.554(1) Å, c = 18.075(4) Å, and β = 93.39(3)°. The structure consists of zigzag [Mn3O14]n chains of edge-sharing MnO6 octahedrons and MnO7 pentagonal bi-pyramids, which form layers of formula [Mn3(HPO4)4(H2PO4)2]4? in the ab plane via H2PO4 and HPO4 units with vertex-sharing. Potassium ions lie between these layers. Magnetic measurements indicate Curie–Weiss behavior above 6 K for 1. A Heisenberg model, with alternating exchange interactions J1J1J2… within the chain and exchange interactions J3J3… between the chains, is proposed to describe the magnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号