首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlocal nonlinear vibration analysis of embedded laminated microplates resting on an elastic matrix as an orthotropic Pasternak medium is investigated. The small size effects of micro/nano-plate are considered based on the Eringen nonlocal theory. Based on the orthotropic Mindlin plate theory along with the von Kármán geometric nonlinearity and Hamilton's principle, the governing equations are derived. The differential quadrature method (DQM) is applied for obtaining the nonlinear frequency of system. The effects of different parameters such as nonlocal parameters, elastic media, aspect ratios, and boundary conditions are considered on the nonlinear vibration of the micro-plate. Results show that considering elastic medium increases the nonlinear frequency of system. Furthermore, the effect of boundary conditions becomes lower at higher nonlocal parameters.  相似文献   

2.
Carbon nanocones have quite fascinating electronic and structural properties,whose axial vibration is seldom investigated in previous studies.In this paper,based ona nonlocal elasticity theory,a nonuniform rod model is applied to investigate the small-scale effect and the nonuniformeffect on axial vibration of nanocones.Using the modifiedWentzel-Brillouin-Kramers(WBK) method,an asymptoticsolution is obtained for the axial vibration of general nonuniform nanorods.Then,using similar procedure,the axial vibration of nanocones is analyzed for nonuniform parameters,mode number and nonlocal parameters.Explicit expressionsare derived for mode frequencies of clamped-clamped andclamped-free boundary conditions.It is found that axial vibration frequencies are highly overestimated by the classicalrod model because of ignorance of the effect of small lengthscale.  相似文献   

3.
基于非局部应变梯度理论,考虑周围弹性介质的影响,研究纳米圆轴的扭转自由振动。首先通过Hamilton原理推导纳米圆轴扭转振动的控制方程及边界条件,接着采用微分求积法得到控制方程及三类边界条件的离散形式,最后由数值计算结果分析扭转振动特性。讨论了两个小尺度参数和弹性介质刚度的变化对振动频率的影响,并通过小尺度参数比对振动频率的影响分析两个尺度参数的耦合作用。研究结果表明,扭转自由振动频率随非局部参数增加而减小,随应变梯度尺度参数、弹性介质刚度增加而增大;当非局部参数大于应变梯度尺度参数时,小尺度效应体现为非局部效应,相反则体现为应变梯度效应。  相似文献   

4.
基于非局部效应和表面效应的输流碳纳米管稳定性分析   总被引:1,自引:0,他引:1  
应用非局部黏弹性夹层梁模型分析双参数弹性介质中输送脉动流碳纳米管的稳定性. 新模型中同时考虑了由管道内、外壁上的薄表面层引起的表面弹性效应和表面残余应力,经典的欧拉梁模型因此通过引入非局部参数和表面参数得到了改进. 用平均法对其控制方程进行求解,得到了管道稳定性区域. 数值算例揭示了纳米材料的非局部效应、表面效应及两个弹性介质参数对管道固有频率、临界流速和动态稳定性的复杂影响,结论可为纳米流体机械的结构设计和振动分析提供理论基础.  相似文献   

5.
In the present paper, the dynamic stability of multi-walled carbon nanotubes(MWCNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam model is developed which captures small scale effects.Dynamic governing equations of the carbon nanotubes are formulated based on the Timoshenko beam theory including the effects of axial compressive force. Then a parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio and spring constant of the elastic medium on the dynamic stability characteristics of MWCNTs with simply-supported end supports.  相似文献   

6.
A nonlocal elastic beam model is developed to investigate the small scale effects on the large-amplitude vibration analysis of embedded multiwalled carbon nanotubes (MWCNTs) at an elevated temperature. The nested slender nanotubes are coupled with each other through the van der Waals (vdW) interlayer interaction. The curvature-dependent vdW force employed incorporates not only pairwise nearest-neighbor but also nonneighbor interactions between nested nanotubes. The incremental harmonic balance method is adopted to analytically solve the nonlinear equations that are governed by the vibrations of nested nanotubes. The influences of small scale parameter, geometrical parameters, temperature rise, and the elastic medium are fully examined.  相似文献   

7.
A nonlocal Euler beam model with second-order gradient of stress taken into consideration is used to study the thermal vibration of nanobeams with elastic boundary.An analytical solution is proposed to investigate the free vibration of nonlocal Euler beams subjected to axial thermal stress.The effects of the nonlocal parameter,thermal stress and stiffness of boundary constraint on the vibration behaviors of nanobeams are revealed.The results show that natural frequencies including the thermal stress are lower than those without the thermal stress when temperature rises.The boundary-constrained springs have significant effects on the vibration of nanobeams.In addition,numerical simulations also indicate the importance of small-scale effect on the vibration of nanobeams.  相似文献   

8.
The effect of length scale on buckling behavior of a single-layer graphene sheet embedded in a Pasternak elastic medium is investigated using a nonlocal Mindlin plate theory. An explicit solution is extracted for the buckling loads of graphene sheet and the influence of the nonlocal parameter and aspect ratio on dimensionless buckling loads is presented. It is found that the nonlocal assumptions exhibit larger buckling loads and stiffness of elastic medium in comparison to classical plate theory.  相似文献   

9.
IntroductionThediscoveryofthefirstcarbonnanotubes[1]hasattractedwideattentionandstimulatedextensivestudies[2 - 5 ].Thestudiesshowedthatthecarbonnanotubesexhibitsuperiormechanical,electronicandchemicalproperties.Onthemechanicalbehavior,thecarbonnanotubespossessexceptionallyhighstrength ,stiffnessandelasticmodulus.Theestimatemodulusofthecarbonnanotubemayreachashighas 1TPa.Itisthelargestofallknownmaterials.Thestrengthorstiffnessishigherthananyknownfiber[3].Thecarbonnanotubeareusedascompositemat…  相似文献   

10.
Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is investigated. In the present study, the SWCNT is assumed to be a curved beam, which is unlike previous similar work. Firstly, the governing equations of motion are derived by the Hamilton principle, meanwhile, the Galerkin approach is carried out to convert the nonlinear integral-differential equation into a second-order nonlinear ordinary differential equation. Then, the precise integration method based on the local linearzation is appropriately designed for solving the above dynamic equations. Besides, the numerical example is presented, the effects of the nonlocal parameters, the elastic medium constants, the waviness ratios, and the material lengths on the dynamic response are analyzed. The results show that the above mentioned effects have influences on the dynamic behavior of the SWCNT.  相似文献   

11.
Sun  Tuoya  Guo  Junhong  Pan  E. 《应用数学和力学(英文版)》2021,42(8):1077-1094
A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2 D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional(3 D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories.Numerical examples are provided to display the effects of the quasiperiodic direction,length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence,and medium elasticity on the vibration frequency and critical buckling load of the 2 D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate.This feature is useful since the frequency and critical buckling load of the 2 D decagonal QCs as coating materials of plate structures can now be tuned as one desire.  相似文献   

12.
In this paper, the free axial vibration of single walled carbon nanorod embedded in an elastic medium is investigated by the use of Rayleigh model. The stress gradient model introduced by Eringen is used to formulate the governing equations. Explicit expressions are derived for eigenfrequencies of fixed-fixed and fixed-free boundary conditions.  相似文献   

13.
Zhang  Pei  Qing  Hai 《应用数学和力学(英文版)》2021,42(10):1379-1396

In this work, the static tensile and free vibration of nanorods are studied via both the strain-driven (StrainD) and stress-driven (StressD) two-phase nonlocal models with a bi-Helmholtz averaging kernel. Merely adjusting the limits of integration, the integral constitutive equation of the Fredholm type is converted to that of the Volterra type and then solved directly via the Laplace transform technique. The unknown constants can be uniquely determined through the standard boundary conditions and two constrained conditions accompanying the Laplace transform process. In the numerical examples, the bi-Helmholtz kernel-based StrainD (or StressD) two-phase model shows consistently softening (or stiffening) effects on both the tension and the free vibration of nanorods with different boundary edges. The effects of the two nonlocal parameters of the bi-Helmholtz kernel-based two-phase nonlocal models are studied and compared with those of the Helmholtz kernel-based models.

  相似文献   

14.
This paper aims to study the effect of externally applied longitudinal magnetic field on the transverse vibration of viscoelastic double-walled carbon nanotubes(visco-DWCNTs)embedded in a viscoelastic medium. The analyses are carried out based on the nonlocal viscoelastic model and Euler-Bernoulli beam theory. Governing equations are derived for the vibration of the embedded visco-DWCNT subjected to a magnetic field, where the Lorentz magnetic force,the surrounding viscoelastic medium, the intertube van der Waals forces and viscoelasticity of the DWCNT are taken into consideration. In this study, the transfer function method is employed to solve the governing equations, which enables one to obtain the natural frequencies and the corresponding mode shapes in closed form for the DWCNTs with arbitrary boundary conditions.Here the developed mechanics model is first compared with the existing techniques available in the literature in a few particular cases, where excellent agreement is achieved. The validation of the model is followed by a detailed parametric study of the effects of longitudinal magnetic field,nonlocal parameter, boundary conditions, structural damping coefficient and aspect ratio of the DWCNTs on their vibration. The study demonstrates the efficiency of the present technique designed for vibration analysis of a complicated multi-physics system comprising DWCNTs, the viscoelastic medium and a magnetic field in longitudinal direction.  相似文献   

15.
Free vibration analysis of quadrilateral multilayered graphene sheets(MLGS) embedded in polymer matrix is carried out employing nonlocal continuum mechanics.The principle of virtual work is employed to derive the equations of motion.The Galerkin method in conjunction with the natural coordinates of the nanoplate is used as a basis for the analysis.The dependence of small scale effect on thickness,elastic modulus,polymer matrix stiffness and interaction coefficient between two adjacent sheets is illustrated.The non-dimensional natural frequencies of skew,rhombic,trapezoidal and rectangular MLGS are obtained with various geometrical parameters and mode numbers taken into account,and for each case the effects of the small length scale are investigated.  相似文献   

16.
The torsional static and dynamic behaviors of circular nanosolids such as nanoshafts, nanorods and nanotubes are established based on a new nonlocal elastic stress field theory. Based on a new expression for strain energy with a nonlocal nanoscale parameter, new higher-order governing equations and the corresponding boundary conditions are first derived here via the variational principle because the classical equilibrium conditions and/or equations of motion can- not be directly applied to nonlocal nanostructures even if the stress and moment quantities are replaced by the corresponding nonlocal quantities. The static twist and torsional vibration of circular, nonlocal nanosolids are solved and discussed in detail. A comparison of the conventional and new nonlocal models is also presented for a fully fixed nanosolid, where a lower-order governing equation and reduced stiffness are found in the conventional model while the new model reports opposite solutions. Analytical solutions and numerical examples based on the new nonlocal stress theory demonstrate that nonlocal stress enhances stiffness of nanosolids, i.e. the angular displacement decreases with the increasing nonlocal nanoscale while the natural frequency increases with the increasing nonlocal nanoscale.  相似文献   

17.
The problem of stability of fluid-conveying carbon nanotubes embedded in an elastic medium is investigated in this paper. A nonlocal continuum mechanics formulation, which takes the small length scale effects into consideration, is utilized to derive the governing fourth-order partial differential equations. The Fourier series method is used for the case of the pinned–pinned boundary condition of the tube. The Galerkin technique is utilized to find a solution of the governing equation for the case of the clamped–clamped boundary. Closed-form expressions for the critical flow velocity are obtained for different values of the Winkler and Pasternak foundation stiffness parameters. Moreover, new and interesting results are also reported for varying values of the nonlocal length parameter. It is observed that the nonlocal length parameter along with the Winkler and Pasternak foundation stiffness parameters exert considerable effects on the critical velocities of the fluid flow in nanotubes.  相似文献   

18.
This paper reports the results of an investigation into the vibration of functionally graded cylindrical shells with flowing fluid, embedded in an elastic medium, under mechanical and thermal loads. By considering rotary inertia, the first-order shear deformation theory (FSDT) and the fluid velocity potential, the dynamic equation of functionally graded cylindrical shells with flowing fluid is derived. Here, heat conduction equation along the thickness of the shell is applied to determine the temperature distribution and material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The equations of eigenvalue problem are obtained by using a modal expansion method. In numerical examples, effects of material composition, thermal loading, static axial loading, flow velocity, medium stiffness and shell geometry parameters on the free vibration characteristics are described. The new features in this paper are helpful for the application and the design of functionally graded cylindrical shells containing fluid flow.  相似文献   

19.
In this study, free vibration of simply supported multi-walled carbon nanotubes (CNTs) embedded in an elastic medium was investigated by using the generalized shear deformation-beam theory (GSDBT). The effects of surrounding elastic medium, which is considered as a spring, defined by the Winkler model, and van der Waals forces from adjacent nanotubes are taken into account. Third-order shear deformation (TOSD) theory is used to study free vibration of a multi-walled carbon nanotube embedded in an elastic medium. Unlike Timoshenko beam theory, TOSD theory satisfies zero traction boundary conditions on the upper and lower surface of the structures, so there is no need to use a shear correction factor. Free vibration frequencies and amplitude ratios were obtained for various sides to thickness ratios and elastic medium effects and results are compared with previous studies. The results showed that significant difference exist between TOSD and Euler beam theory. It is also interesting to note that, although frequency parameter is increasing by increasing stiffness of embedded medium, amplitude ratios are insensitive to stiffness of embedded elastic medium. Dedicated to the honorable memory of my beloved mother Fatma Aydogdu (Romania,1933-Tekirdag, August 7, 2007)  相似文献   

20.
The thermal effect on axially compressed buckling of a double-walled carbon nanotube is studied in this paper. The effects of temperature change, surrounding elastic medium and van der Waals forces between the inner and outer nanotubes are taken into account. Using continuum mechanics, an elastic double-shell model with thermal effect is presented for axially compressed buckling of a double-walled carbon nanotube embedded in an elastic matrix under thermal environment. Based on the model, an explicit formula for the critical axial stress is derived in terms of the buckling modes of the shell and the parameters that indicate the effects of temperature change, surrounding elastic medium and the van der Waals forces. Based on that, some simplified analysis is carried out to estimate the critical axial stress for axially compressed buckling of the double-walled carbon nanotube. Numerical results for the general case are obtained for the thermal effect on axially compressed buckling of a double-walled carbon nanotube. It is shown that the axial buckling load of double-walled carbon nanotube under thermal loads is dependent on the wave number of axially buckling modes. And a conclusion is drawn that at low and room temperature the critical axial stress for infinitesimal buckling of a double-walled carbon nanotube increase as the value of temperature change increases, while at high temperature the critical axial stress for infinitesimal buckling of a double-walled carbon nanotube decrease as the value of temperature change increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号