首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platinum(II) and palladium(II) complexes of the trithiacrown [9]aneS(3) containing a range of Group 15 donors are reviewed. These complexes have the general formula [M([9]aneS(3))(L(2))](n+) where L represents at least one Group 15 donor. Complexes involving pnictogens, with the exception of bismuth, are observed. The complexes generally have an elongated square pyramidal geometry with a long distance interaction to the third sulphur of the [9]aneS(3) which forms the apex of the square pyramid. This axial metal-sulphur distance is quite sensitive to the donor properties of L. Poorer donors such as Sb and As ligands show short axial distances whereas the better N donor ligands show longer distances. Pt(II) complexes of the formula [Pt([9]aneS(3))(EPh(3))(2)](2+) (E = P, As, Sb) show a considerable distortion towards a trigonal bipyramidal geometry due to intramolecular π-π interactions. Over seventy of these types of complexes have been crystallographically characterized and are discussed in this article. Other unique features of the complexes, including NMR spectroscopy, redox chemistry, and electronic spectroscopy, are also discussed.  相似文献   

2.
The complexes [M(tptpy)(2)](ClO(4))(2) (M = Zn(ii) (1), Cd(ii) (2), and Cu(ii) (3)); tptpy = 4'-[1,1':4',1']terphenyl-4'-yl-[2,2':6',2']terpyridine = 4'-terphenylterpyridine) have been synthesized, structurally characterized by X-ray crystallography and subjected to preliminary luminescence studies. In the crystalline state, all the metal ions have an N(6) coordination sphere of distorted octahedral geometry and the structures of the Zn(ii) and Cd(ii) complexes are isomorphous but differ from that of the Cu(ii) complex, which also differs from the other two in that it is non-emissive. The structure determinations show that aromatic-aromatic interactions involving both the terpyridine heads and the terphenyl tails are important factors influencing the crystalline array. The emission spectra of the Zn(ii) and Cd(ii) complexes are very similar and show a considerable red-shift of the emission maximum compared to that of the free ligand.  相似文献   

3.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

4.
Cellular uptake, luminescence imaging and antimicrobial activity against clinically relevant methicillin-resistant S. aureus (MRSA) bacteria are reported. The osmium(ii) complexes [Os(N^N)3]2+ (N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (12+); 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (22+); 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (32+)) were prepared and isolated as the chloride salts of their meridional and facial isomers. The complexes display prominent spin-forbidden ground state to triplet metal-to-ligand charge transfer (3MLCT) state absorption bands enabling excitation as low as 600 nm for fac/mer-32+ and observation of emission in aqueous solution in the deep-red/near-IR regions of the spectrum. Cellular uptake studies within MRSA cells show antimicrobial activity for 12+ and 22+ with greater toxicity for the meridional isomers in each case and mer-12+ showing the greatest potency (32 μg mL−1 in defined minimal media). Super-resolution imaging experiments demonstrate binding of mer- and fac-12+ to bacterial DNA with high Pearson''s colocalisation coefficients (up to 0.95 using DAPI). Phototoxicity studies showed the complexes exhibited a higher antimicrobial activity upon irradiation with light.

Cellular uptake, luminescence imaging and antimicrobial activity of facial and meridional isomers of Os(ii) triazole-based complexes against methicillin-resistant S. aureus, MRSA.  相似文献   

5.
Uridine (and thymidine) undergo proton loss at N3 and coordinate as anions to displace all water molecules from dienPd(OH2)2+, dienPt(OH2)2+, enPd(OH2)22+ and enPt(OH2)22+ to form fully substituted complexes in neutral solutions. Though favored at equilibrium at low pH, the reactions of the ligands with the Pt(II) complexes proceed slowly because of the sluggishness of Pt(II) substitutions and the small fractions of ligands with pKa from 9.3 to 9.8 in the anionic basic form. Both dienPd(OH2)2+ and dienPt(OH2)2+ form two mononuclear complexes with the metal ion at N1 and N7 of adenosine and a binuclear complex with metal ions at both sites. In the mononuclear complexes dienPd(II) favors N1 over N7 coordination by 5 to 1 while dienPt(II) is nearly equally distributed between the two sites when reacting with a neutral adenosine molecule.  相似文献   

6.
New inclusion complexes and [2]catenanes were self-assembled from a fluorescent diazapyrenium based ligand, a Pd(II) or Pt(II) complex, and cyclic or acyclic electron rich aromatic guests in aqueous and organic media. The molecular rectangles display a π-deficient cavity suitable to incorporate π-donor aromatic systems. The inclusion complexes between the metallocycles and phenylenic () and naphthalenic () derivatives were studied by NMR, UV-vis and fluorescence spectroscopy. The crystal structure of () ? ·6PF(6) confirmed the insertion of the guest into the cavity of the metallocycle. Following the same self-assembly strategy, the use of polyethers , as π-donors resulted in the self-assembly of the [2]catenanes (,)·6PF(6). Single-crystal X-ray analysis of ()·6PF(6) revealed the [2]catenane structure being stabilized by π-stacking and [C-HO] interactions.  相似文献   

7.
《Mendeleev Communications》2020,30(2):246-248
  1. Download : Download high-res image (98KB)
  2. Download : Download full-size image
  相似文献   

8.
The mononuclear complexes [Pt(bzq)(S^S)] [S^S = pyrrolidinedithiocarbamate (pdtc 1), dimethyldithiocarbamate (dmdtc 2)] were prepared by reaction of [Pt(bzq)(NCMe)(2)]ClO(4) with an equimolecular amount of [NH(4)(pdtc)] and [Na(dmdtc)·2H(2)O] respectively in MeOH. Reactions of 1 and 2 with AgClO(4) in 1 : 1 and 2 : 1 molar ratios rendered the heteropolinuclear compounds [{Pt(bzq)(S^S)Ag}(2)](ClO(4))(2) (S^S = pdtc 3, dmdtc 4) and [{Pt(bzq)(S^S)}(2)Ag](ClO(4)) (S^S = pdtc 5, dmdtc 6) respectively. The X-ray studies on single crystals of 3 and 4 showed that both consist of tetranuclear [Pt(2)Ag(2)] clusters with the Pt-Ag and the Ag-Ag distances in the range of those corresponding to Pt-Ag dative bonds and argentophilic interactions. In 3 the tetranuclear [Pt(2)Ag(2)] clusters are connected into infinite polymeric chains by Pt···Pt metallophilic interactions (Pt···Pt = 3.1890(7) ?). The X-ray study on a single crystal of 5 showed that it is a polymer based on trinuclear [Pt(2)Ag] clusters containing two unsupported Pt-Ag dative bonds and connected by Ag-S bonds in such a way that the "Pt-Ag-S-Pt-Ag-S" atoms draw a zigzag polymeric chain. TD-DFT calculations carried out for 1 indicate that the lowest energy absorption band in CH(2)Cl(2) can be described as a mixture of (1)MLCT, (1)IL and (1)L'LCT transitions. Powdered samples of 1 at 298 K and 77 K show a green-yellow emission band coming mainly from a (3)LC excited state. However complex 2 shows "luminescence thermochromism": the colour of its luminescence changes from green-yellow at 77 K to orange-red at 298 K. The emission of the Pt-Ag clusters, 3-6, in the solid state, are due to excimeric (3)ππ and/or (3)MMLCT (dσ* →π*) low-lying excited states, indicating that the presence of silver in the clusters makes the "Pt(bzq)(S^S)" fragments interact to a large extent through Pt···Pt and/or π-π interactions. Solid 3 is a highly selective vapochromic compound towards acetonitrile although this behaviour is not fully reversible.  相似文献   

9.
The syntheses and photophysical attributes of a range of dual-emissive lanthanide complexes are described. The simple ligand architecture is based upon a diethylenetriaminepentaacetic acid (DTPA) core and appended with two aminopyrenyl chromophores to yield the fluorescent free ligand Lpyr. Reaction of the ligand with Ln(tris-trifluoromethanosulfate) gave the mononuclear complexes Ln · Lpyr (Ln = Nd, Er, Yb). Luminescence studies revealed that the complexes were emissive in both the near-IR and UV–Vis, the latter resulting from pyrene localised emission (λem = 390 nm), the former from pyrene-sensitised emission of the lanthanide ion (λex = 337 nm). Time-resolved measurements in the near-IR indicated that the number of coordinated solvent molecules for Nd and Yb was <1, confirming the proposed coordination mode of the octadentate Lpyr. The suitability of pyrene as a sensitiser for near-IR emitting lanthanides was further demonstrated in the rare observation of ErIII emission in a non-deuteriated protic medium.  相似文献   

10.
The reaction of the dinuclear complex Co2(bpy)2(OOCBut)4 with the tetranuclear complex Ni4(3-OH)2(OOCBut)6(EtOH)6 afforded the trinuclear heterometallic complex M3(bpy)2(3-OH)(-OOCBut)4(OOCBut) (6) (M = Ni, Co; Ni : Co = 1.2 : 1) in which two metal atoms are in an octahedral environment and one metal atom is in a tetrahedral environment. The reaction of 2,2"-bipyridine with Co4(3-OH)2(OOCBut)6(HOEt)6 (reagent ratio was 2 : 1) or the reaction of bpy with Co8(4-O)2( n -OOCBut)12 (reagent ratio was 4 : 1) produced a homometallic analog of 6, viz., the trinuclear cluster Co3(bpy)2(3-OH)(-OOCBut)4(OOCBut) (8). The reaction of 1,10-phenanthroline (phen) with the [Co(OH) n (OOCBut)2–n ] x polymer gave the analogous trinuclear cluster (phen)2Co3(3-OH)(2-OOCBut)4(1-OOCBut). Compounds 6 and 8 exhibit antiferromagnetic spin-spin exchange interactions.  相似文献   

11.
12.
Coupled mechanical forces are known to drive a range of covalent chemical reactions, but the effect of mechanical force applied to a spectator ligand on transition metal reactivity is relatively unexplored. Here we quantify the rate of C(sp2)–C(sp2) reductive elimination from platinum(ii) diaryl complexes containing macrocyclic bis(phosphine) ligands as a function of mechanical force applied to these ligands. DFT computations reveal complex dependence of mechanochemical kinetics on the structure of the force-transducing ligand. We validated experimentally the computational finding for the most sensitive of the ligand designs, based on MeOBiphep, by coupling it to a macrocyclic force probe ligand. Consistent with the computations, compressive forces decreased the rate of reductive elimination whereas extension forces increased the rate relative to the strain-free MeOBiphep complex with a 3.4-fold change in rate over a ∼290 pN range of restoring forces. The calculated natural bite angle of the free macrocyclic ligand changes with force, but 31P NMR analysis and calculations strongly suggest no significant force-induced perturbation of ground state geometry within the first coordination sphere of the (P–P)PtAr2 complexes. Rather, the force/rate behavior observed across this range of forces is attributed to the coupling of force to the elongation of the O⋯O distance in the transition state for reductive elimination. The results suggest opportunities to experimentally map geometry changes associated with reactions in transition metal complexes and potential strategies for force-modulated catalysis.

The influence of mechanical force on the rates of model reductive elimination reactions depends on the structure of the force-transducing ligand and provides a measure of geometry changes upon reaching the transition state.  相似文献   

13.
Twelve new Au(III), Pt(II) and Pd(II) complexes with glycyl-containing homopeptides glycyl-glycine (G2), glycyl-glycyl-glycine (G3), glycyl-glycyl-gycyl-glycine (G4), glycyl-glycyl-glycyl-glycyl-glycine (G5) and glycyl-glycyl-glycyl-glycyl-glycyl-glycine (G6) have been synthesized, isolated and characterized spectroscopically and structurally by means of solid-state linear-dichroic infrared (IR-LD) spectroscopy of oriented colloids in nematic liquid crystal host, 1H- and 13C-NMR, TGA and DSC, UV–Vis spectroscopy, EPR, ESI- and FAB mass spectrometry and HPLC tandem mass spectrometry (HPLC-MS/MS). Quantum chemical calculations are carried out with a view to obtain the structures and spectroscopic properties of the ligand and newly synthesized metal complexes.  相似文献   

14.
Isomerization of phenyl-substituted propargylplatinum(II) complex, trans-Pt(CH2CCPh)(Cl)(PPh3)2 (1) to allenyl complex, trans-Pt(CPh=C=CH2)(Cl)(PPh3)2 (2) was found to be catalyzed by zerovalent complex Pd(PPh3)4. The reaction was proposed to proceed through the transfer of the propargyl/allenyl ligand both from Pt(II) to Pd(0) and Pd(II) to Pt(0). The former transfer, which seemingly has a thermodynamic disadvantage, has unambiguously been confirmed to take place; treatment of 1 with Pd(PPh3)4 or a mixture of Pd2(dba)3 and PPh3 resulted in the formation of Pd(I) complex, Pd2(μ-PhCCCH2)(μ-Cl)(PPh3)2 which lies in equilibrium with a mixture of propargyl/allenylpalladium(II) and Pd(0) complexes.  相似文献   

15.
Cis-[MLCl2] complexes of di-(2-pyridyl)pyrimidin-2-ylsulfanylmethane ligand (L), where M = Pd (1), and M = Pt (2) have been synthesized. Reaction of 1 with L in presence of Na[BF4] and hot acetonitrile produced the complex [PdL2](BF4)2 (3). Complexes 1-3 and ligand L have been characterized by elemental analyses, IR and NMR spectroscopy. Crystal structures of 1, 3 and L were determined by single crystal X-ray diffraction analyses, showing nonplanar structures with the pyridinic rings twisted around the bridging carbon and the ipso carbon bonds. 1 and 3 displayed a bidentate coordination of L to the palladium atom with the formation of six-membered chelate rings, where the local geometry at palladium atom was distorted square planar. In 3 the palladium atom was coordinated to two dipyridyl ligands through two of the pyridinic nitrogen atoms to form a cationic complex stabilized by two tetrafluoroborate counter-ions.  相似文献   

16.
Summary Heterobimetallic complexes of the types [Cp2Ti(-EAr)2-M(dppe)] (ClO4)2 [(1)–(4); M, E = Ni, Te (1); Ni, Se (2); Pt, Te (3); Pt, Se (4); Ar = Ph (a), C6H4-4-Me (b), C6H4-4-OMe (c), C6H4-4-OEt (d)] and [Cp2Ti(-TeAr)2-MCl 2] [M = Pd (5), Pt (6)] were obtained by the reactions of Cp2Ti(EAr)2 with M(dppe)(ClO4)2 and M(PhCN)2Cl2, respectively. While (1), (5) and (6) are stable in the solid state as well as in solution, (2)–(4) undergo dissociation to M(dppe)(EAr)2 and Cp2Ti(ClO4)2 in solution, as shown by multinuclear (31P{1H},195Pt{1H}, 125Te{1H}) n.m.r. studies. The reaction of Cp2Ti(SeAr)2 with M(PhCN)2Cl2, however, leads to the formation of Cp2TiCl2 and a polymeric material [M(SeAr)2] n .  相似文献   

17.
Conclusion Heating of a solution of the PtCl6 2– ion and an arylmercury compound containing a substituent in the ortho position to mercury leads to the formation of a diaryl (in the case of -naphthylmercury) or arene (in the case of the mesityl or pentamethylphenyl mercury derivatives).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2374–2376, October, 1986.The authors express their gratitude to A. E. Shilov and A. K. Yatsimirskii for a useful discussion of these results.  相似文献   

18.
The reaction of two equivalents of the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine Ph2PNHC=NNCHS (2) with [PdCl2(NCPh)2] in the presence of NEt3 gives the neutral, P,N-chelated complex cis-[Pd(Ph2PN=CNN=CHS)2] ([Pd(2-H)2], 3b), which is analogous to the Pt(II) analogue cis-[Pt (Ph2PN=CNN=CHS)2] ([Pt(2-H)2], 3a) reported previously. These complexes function as chelating metalloligands when further coordinated to a metal through each of the CH-N atoms. In the resulting complexes, each endo-cyclic N donor of the thiadiazole rings is bonded to a different metal centre. Thus, the heterodinuclear palladium/platinum complexes cis-[Pt(Ph2PN=CNN=CHS)2PdCl2]([Pt(2-H)2·PdCl2], 4a) and cis-[Pd(Ph2PN=CNN=CHS)2PtCl2]([Pd(2-H)2·PtCl2], 4b) were obtained by reaction with [PdCl2(NCPh)2] and [PtCl2(NCPh)2], respectively. In contrast, reaction of 3a with [AuCl(tht)] occurred instead at the P-bound N atom, and afforded the platinum/digold complex cis-[Pt{Ph2PN(AuCl)=CNN=CHS}2] ([Pt(2-H)2(AuCl)2], 5). For comparison, reaction of 4a with HBF4 yielded cis-[Pt(Ph2PNH=CNN=CHS)2PdCl2](BF4)2([H24a](BF4)2, 6), in which the chelated PdCl2 moiety is retained. Complexes 3b, 4a·CH2Cl2, 4b·0.5C7H8, 5·4CHCl3 and 6 have been structurally characterized by X-ray diffraction.  相似文献   

19.
In this study, the electronic structures and optical properties of a cyclometalated Pt(II) complex (M1) and a series of derivatives (M1–F, M1–CF3, and M1–CN) with electron-withdrawing substituents (–F, –CF3, and –CN) at the carbazole moiety were theoretically investigated by density functional theory and time-dependent density functional theory. The calculation results reveal that these Pt complexes display deep red phosphorescence emission above Λ = 640 nm. When the 3MLCT/π → π* to triplet metal-centered 3MC/d–d state decay mechanism is taken into consideration, the nonradiative decay rate constant (knr) decreased in the order M1 > M1–CF3 > M1–F > M1–CN. The <T1|HSOC|Sm> and kr values of M1-F are similar with those of M1, however the Knr rate ofM1-F is larger than that of M1. M1–F is expected to have improved quantum yields. Moreover, through the analyses of the HOMO/LUMO level and triplet energy, it is found that the introduction of –F and –CN substituents in M1 results in efficient energy transfer from the host material 4,4′-N,N′-dicarbazole-biphenyl to these complexes. In view of the electroluminescent applications in organic light-emitting diodes, M1–F can serve as efficient deep-red guest materials with improved electron injection and transport ability.  相似文献   

20.
lp;&-5q;1 The reactions of [Tl2[S2C=C[C(O)Me]2]]n with [MCl2L2] (1:1) or with [MCl2(NCPh)2] and PPh3 (1:1:2) give complexes [M[eta2-S2C=C[C(O)Me]2]L2] [M = Pt, L2 = 1,5-cyclooctadiene (cod) (1); L2 = bpy, M = Pd (2a), Pt (2b), L = PPh3, M = Pd (3a), Pt (3b)] whereas with MCl2 and QCl (2:1:2) anionic derivatives Q2[M[eta2-S2C=C[C(O)Me]2]2] [M = Pd, Q = NMe4 (4a), Ph3P=N=PPh3 (PPN) (4a'), M = Pt, Q = NMe4 (4b)] are produced. Complexes 1 and 3 react with AgClO4 (1:1) to give tetranuclear complexes [[ML2]2Ag2[mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2]](ClO4)2 [L = PPh3, M = Pd (5a), Pt (5b), L2 = cod, M = Pt (5b')], while the reactions of 3 with AgClO4 and PPh3 (1:1:2) give dinuclear [[M(PPh3)2][Ag(PPh3)2][mu2,eta2-(S,S')-S2C=C[C(O)Me]2]]]ClO4 [M = Pd (6a), Pt (6b)]. The crystal structures of 3a, 3b, 4a, and two crystal forms of 5b have been determined. The two crystal forms of 5b display two [Pt(PPh3)2][mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2] moieties bridging two Ag(I) centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号