首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Thermal expansion of materials is a comparatively easy‐understood physical property. Prussian blue analogues are of particular interest in engineering as new zero thermal expansion materials. We investigated the thermal expansion in K0.46Co1.27[Fe(CN)6] · 5.5H2O by x‐ray powder diffraction. This compound is a good example of a zero thermal expansion material. The origin of zero thermal expansion is considered to be the low frequency transverse vibrational motion of the cyano bridges.  相似文献   

2.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

3.
The reaction between tris(ethyl­enedi­amine)­nickel(II) cations and hexa­cyanometallate(III) anions (M = Fe, Co) yields ordered bimetallic assemblies, catena‐poly­[[tris­(ethyl­enedi­amine)­nickel‐bis(μ‐hexa­cyano­iron‐N,N′)] trihydrate] and catena‐poly­[[tris­(ethyl­enedi­amine)­nickel‐bis(μ‐hexa­cyano­cobalt‐N,N′)] trihydrate], [{Ni(C2H8N2)2}3{M(CN)6}2]·3H2O, in which both cis and trans [Ni(en)2] and [M(CN)6] moieties are linked to give S‐shaped Ni–NC–M–CN–Ni–NC–M–CN–Ni units which are cross­linked to give ribbons parallel to the b axis. The two compounds are isomorphous with mean metal–ligand distances Fe—C = 1.940 (3), Co—C = 1.844 (3) and Ni—N = 2.102 (2) Å for the iron, and 2.105 (3) Å for the cobalt compound. These compounds appear to be identical with those formulated as [Ni(en)2]3[M(CN)6]2·2H2O [Ohba, Maruona, Okawa, Enoki & Latour (1994). J. Am. Chem. Soc. 116 , 11566–11567; Ohba, Fukita & Okawa (1997). J. Chem. Soc. Dalton Trans. pp. 1733–1737] which were indexed on a smaller unit cell and described as disordered.  相似文献   

4.
The crystal structure of the bimetallic cyanide‐bridged title complex, tri­aqua‐1κ3O‐μ‐cyano‐1:2κ2N:C‐penta­cyano‐2κ5C‐tetrakis(N,N‐di­methyl­form­amide)‐1κ4O‐chromium(III)­prase­odymium(III) monohydrate, was obtained by single‐crystal X‐ray diffraction. The central praseodymium(III) ion is eight‐coordinate, arranged in a square antiprism, while the chromium(III) ion is six‐coordinate, oriented octahedrally. Molecules in the crystal lattice are held together by a network of hydrogen bonds.  相似文献   

5.
Characterization of Distortional Isomers of the Anions Pentacyano-oxo-molybdate(IV) and of Tetracyano-aqua-oxo-molybdate(IV) in the Solid State. Crystal Structures of [(C6H5)4P]3[MoO(CN)5] · 7 H2O (green), [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue), and [(C6H5)4P]2[MoO(OH2) (CN)4] · 4 H2O (green) Preparation of a series of salts containing the new pentacyano-oxo-molybdate(IV) anion is described: Cs2H[MoO(CN)5] (blue), [(CH3)4N]2H[MoO(CN)5] · 2 H2O (blue) and [Cr(en)3] [MoO(CN)5] · 4 H2O (green). The green [(C6H5)4P]3[MoO(CN)5] · 7 H2O crystallizes triclinic in the space group P1 . The molybdenum(IV) center is in an pseudo-octahedral environment of a terminal oxo-group (d(Mo?O); 1.705(4) Å), a CN? group in the trans-position (d(Mo? C): 2.373(6) Å), and four equatorial CN? groups (averaged d(Mo? C): 2.178 (Å). The blue and green salts exhibit v(Mo?O) stretching frequencies at 948 cm?1 and 920 cm?1, respectively. Blue and green salts containing the [MoO(OH2)(CN)4]2? anion and [(C6H5)4P]+ or [(C6H5)4As]+ cations have been prepared and characterized by single crystal crystallography. [(C6H5)4P]2[MoO(OH2)(CN)4] · 4 H2O (green) and [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue) crystallize monoclinic in the space group C—P21/n. They are considered to be distortional isomers of the complex anion: the green species has a Mo?O bond distance of 1.72(2) Å whereas for the blue species d(Mo?O) = 1.60(2) Å is found; the corresponding v(Mo?O) frequencies are at 920 cm?1 and 980 cm?1.  相似文献   

6.
Partial reduction of the CuII ions in the aqueous system CuII–en–[Ni(CN)4]2? (1/1/1) (en is 1,2‐di­amino­ethane) yields a novel heterobimetallic mixed‐valence compound, poly­[[aqua­bis(1,2‐di­amino­ethane)copper(II)] [hexa‐μ‐cyano‐tetra­cyano­bis(1,2‐di­amino­ethane)­tricopper(I,II)­dinickel(II)] dihydrate], [Cu(C2H8N2)2(H2O)][Ni2Cu3(CN)10(C2H8N2)2]·2H2O or [Cu(en)2(H2O)][Cu(en)2Ni2Cu2(CN)10]·2H2O. The structure is formed by a negatively charged two‐dimensional array of the cyano complex [Cu(en)2Ni2Cu2(CN)10]n2n?, [Cu(en)2(H2O)]2+ complex cations and water mol­ecules of crystallization. These last are involved in a complicated hydrogen‐bonding system. The cyano groups act as terminal, μ2‐bridging or μ3‐bridging ligands.  相似文献   

7.
Alkaline Molybdotellurates: Preparation and Crystal Structures of Rb6[TeMo6O24] · 10H2O and Rb6[TeMo6O24] · Te(OH)6 · 6H2O Single crystals of Rb6[TeMo6O24] · 10 H2O and Rb6[TeMo6O24] · Te(OH)6 · 6 H2O, respectively, were grown from aqueous solution. Rb6[TeMo6O24] · 10 H2O possesses the space group P1 . The lattice dimensions are a = 963.40(13), b = 972.56(12), c = 1 056.18(13) pm, α = 97.556(10), β = 113.445(9), γ = 102.075(10)°; Z = 1, 2 860 reflections, 215 parameters refined, Rg = 0.0257. The centrosymmetrical [TeMo6O24]6? anions are stacked parallel to [010]. Rb(2) is coordinated with one exception by water molecules only. Folded chains consisting of [TeMo6O24]6? anions and Rb(2) coordination polyhedra which are linked to pairs represent the prominent structural feature. Rb6[TeMo6O24] · Te(OH)6 · 6 H2O crystallizes monoclinically in the space group C2/c with a = 1 886.4(3), b = 1 000.9(1), c = 2 126.5(3) pm, and β = 115.90(1)°; Z = 4, 3 206 reflections, 240 parameters refined, Rg = 0.0333. It is isostructural in high extent with (NH4)6[TeMo6O24] · Te(OH)6 · 7 H2O. Hydrogen bonds between Te(OH)6 molecules and [TeMo6O24]6? anions establish infinite strands. The [TeMo6O24]6? anions gather around Te(OH)6 providing channel-like voids extending parallel to [001].  相似文献   

8.
The Layered Structure of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O Triclinic single crystals of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O have been grown in an aqueous silica gel. Space group (Nr. 2), a = 723.94(7) pm, b = 813.38(14) pm, c = 931.0(2) pm, α = 74.24(2)°, β = 79.24(2)°, γ = 65.451(10)°, V = 0.47819(14) nm3, Z = 1. Cu2+ is coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms of the pyromellitate anions and one nitrogen atom of pyrazine (Cu—O 194.1(2)–229.3(3) pm; Cu–N 202.0(2) pm). The connection of Cu2+ and [C6H2(COO)4)]4? yields infinite strands, which are linked by pyrazine molecules to form a two‐dimensional coordination polymer. Thermogravimetric analysis in air showed that the dehydrated compound was stable between 175 and 248 °C. Further heating yielded CuO.  相似文献   

9.
10.
On the Crystal Structures of the Transition‐Metal(II) Dodecahydro‐closo‐Dodecaborate Hydrates Cu(H2O)5.5[B12H12]·2.5 H2O and Zn(H2O)6[B12H12]·6 H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic copper(II) carbonate or zinc carbonate, blue lath‐shaped single crystals of the octahydrate Cu[B12H12]·8 H2O (≡ Cu(H2O)5.5[B12H12]·2.5 H2O) and colourless face‐rich single crystals of the dodecahydrate Zn[B12H12]·12 H2O (≡ Zn(H2O)6[B12H12]·6 H2O) could be isolated after isothermic evaporation. Copper(II) dodecahydro‐closo‐dodecaborate octahydrate crystallizes at room temperature in the monoclinic system with the non‐centrosymmetric space group Pm (Cu(H2O)5.5[B12H12]·2.5 H2O: a = 768.23(5), b = 1434.48(9), c = 777.31(5) pm, β = 90.894(6)°; Z = 2), whereas zinc dodecahydro‐closo‐dodecaborate dodecahydrate crystallizes cubic in the likewise non‐centrosymmetric space group F23 (Zn(H2O)6[B12H12]·6 H2O: a = 1637.43(9) pm; Z = 8). The crystal structure of Cu(H2O)5.5[B12H12]·2.5 H2O can be described as a monoclinic distortion variant of the CsCl‐type arrangement. As characteristic feature the formation of isolated [Cu2(H2O)11]4+ units as a condensate of two corner‐linked Jahn‐Teller distorted [Cu(H2O)6]2+ octahedra via an oxygen atom of crystal water can be considered. Since “zeolitic” water of hydratation is also present, obviously both classical H–Oδ?···H–O and non‐classical B–Hδ?···H–O hydrogen bonds play a significant role for the stabilization of the structure. A direct coordinative influence of the quasi‐icosahedral [B12H12]2? anions on the Cu2+ cations has not been determined. The zinc compound Zn(H2O)6[B12H12]·6 H2O crystallizes in a NaTl‐type related structure. Two crystallographically different [Zn(H2O)6]2+ octahedra are present, which only differ in their relative orientation within the packing of the [B12H12]2? anions. The stabilization of the crystal structure takes place mainly via H–Oδ?···H–O hydrogen bonds, since again the hydrogen atoms of the [B12H12]2? anions have no direct coordinative influence on the Zn2+ cations.  相似文献   

11.
The title compound, tetrakis(tetraethylammonium) cyclo‐tetra‐μ‐oxo‐tetrakis[dioxovanadium(V)] dihydrate, (C8H20N)4[V4O12]·2H2O, was obtained by reacting V2O5 with (C2H5)4NOH. It consists of a discrete centrosymmetric molecular anion, [V4O12]4?, where four tetrahedral VO4 units share two vertices with each other to form a ring. A water mol­ecule is attached on each side of the ring through hydrogen bonds.  相似文献   

12.
Calcium tetra­thio­cyanato­diargentate(I) dihydrate, Ca[Ag2(SCN)4]·2H2O, contains eight‐membered Ag4S4 rings bonded together through shared atoms to form layers parallel to (100). The thio­cyanate groups link the layers to Ca–O chains running parallel to the c axis. The Ca atom is located on a twofold rotation axis parallel to b and is surrounded by four water molecules of crystallization and four thio­cyanate N atoms in a distorted square antiprism.  相似文献   

13.
The structures of the hexafluoridoiridates(IV) of calcium, Ca[IrF6]·2H2O [calcium hexafluoridoiridate(IV) dihydrate], strontium, Sr[IrF6]·2H2O [strontium hexafluoridoiridate(IV) dihydrate], and barium, Ba[IrF6] [barium hexafluoridoiridate(IV)], have been determined by single‐crystal X‐ray analysis. The first two compounds are isomorphous. Their metal cations are eight‐coordinated in a distorted square‐antiprismatic coordination environment, and their anions are represented by an almost ideal octahedron. These two structures can be described as frameworks in which all atoms occupy general positions. Sr[RhF6] and Ba[RhF6] have a different space group (, from powder diffraction data) but similar cell dimensions. The structures are very close to that of Ba[IrF6]. The cation is in a cuboctahedral coordination. The metal atoms are located on special positions of symmetry, while the F atoms are in general positions.  相似文献   

14.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

15.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

16.
Bright red crystals of [Mn(H2O)6][BiI4]2 · 2H2O are obtained from a solution of MnI2, BiI3, and I2 in absolute ethanol, which is exposed to humid air. Reversible dehydratization sets in at about 50 °C. Added water decomposes the hydrate by irreversible precipitation of BiOI. The optical bandgap is about 1.9(1) eV. X‐ray diffraction on a single‐crystal revealed a monoclinic lattice (space group P21/c) with a = 760.39(4) pm, b = 1315.6(1) pm, c = 1398.37(7) pm, and β = 97.438(4)°. In the crystal structure zigzag chains of edge‐sharing [BiI2/1I4/2] octahedra and linear strings of H2O‐bridged [Mn(H2O)6]2+ octahedra run parallel [100].  相似文献   

17.
Li6[TeMo6O24] · 18 H2O is triclinic (space group P1 , a = 1 041.7(1), b = 1 058.6(1), c = 1 070.8(1) pm, α = 61.08(1), β = 60.44(1), γ = 73.95(1)°). Single crystal X-ray structure analysis (Z = 1, 295 K, 317 parameters, 3 973 reflections, Rg = 0.0250) revealed an infinite branched chain of edge-sharing Li coordination polyhedra to be the prominent structural feature. One of the four crystallographically independent Li+ is coordinated octahedrally. The coordination polyhedra of the remaining Li+ are distorted trigonal bipyramids. Only three unique oxygen atoms (O(9), O(10), O(12)) of the centrosymmetric [TeMo6O24]6? anion are bound to Li+. The further positions in the coordination spheres of the Li+ are occupied by water molecules. Intermolecular hydrogen bonds involve mainly oxygen atoms of the [TeMo6O24]6? anion as nearly equivalent proton acceptors without regard to their different bonding modes to Te and Mo, respectively. Li6[TeMo6O24] · Te(OH)6 · 18 H2O crystallizes monoclinically in space group P21/n with Z = 4, a = 994.1(3), b = 2 344.8(10), c = 1 764.9(4) pm, and β = 91.36(4)°. Single crystal structure analysis with least squares refinement of 627 parameters (5 900 reflections, 295 K) converged to Rg = 0.0324. There are six unique Li+ cations. The coordination polyhedra of Li(1), Li(2), Li(3), and Li(4) are linked by common edges to yield an eight membered centrosymmetric strand. The coordination polyhedra of the remaining two Li+ sites (Li(5), Li(6)) are connected to a dimeric unit via a common corner. All oxygen atoms of the Te(OH)6 molecule are involved in the coordination of Li+. However, only three oxygen atoms (O(13), O(18), O(23)) of the [TeMo6O24]6? anion which lacks crystallographic symmetry are involved in the coordination of Li+. The oxygen atoms of the anion act as proton acceptors in hydrogen bonds of predominantly medium strength. Te(OH)6 molecules and [TeMo6O24]6? anions connected by strong hydrogen bonds form an infinite chain.  相似文献   

18.
19.
The title compound, catena‐poly[[bis[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐di‐μ‐cyanido‐κ4N:C‐palladate(II)‐di‐μ‐cyanido‐κ4C:N] dibromide bis[[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐μ‐cyanido‐κ2N:C‐[dicyanidopalladate(II)]‐μ‐cyanido‐κ2C:N] monohydrate], {[Cu2Pd(CN)4(C6H15N3)2]Br2·[Cu2Pd2(CN)8(C6H15N3)2]·H2O}n, (I), was isolated from an aqueous solution containing tacn·3HBr (tacn is 1,4,7‐triazacyclononane), Cu2+ and tetracyanidopalladate(2−) anions. The crystal structure of (I) is essentially ionic and built up of 2,2‐electroneutral chains, viz. [Cu(tacn)(NC)–Pd(CN)2–(CN)–], positively charged 2,4‐ribbons exhibiting the composition {[Cu(tacn)(NC)2–Pd(CN)2–Cu(tacn)]2n+}n, bromide anions and one disordered water molecule of crystallization. The O atom of the water molecule occupies two unique crystallographic positions, one on a centre of symmetry, which is half occupied, and the other in a general position with one‐quarter occupancy. One of the tacn ligands also exhibits disorder. The formation of two different types of one‐dimensional structural motif within the same structure is a unique feature of this compound.  相似文献   

20.
The crystal and molecular structure of dipotassium di‐μ‐oxo‐bis[aqua(oxalato‐O1,O2)oxomolybdenum(III)] trihydrate, K2­[Mo2O4(C2O4)2(H2O)2]·3H2O, has been determined from X‐ray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo‐O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water mol­ecule. Bond lengths trans to the multiple‐bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号