首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tearing energy of aluminium, copper and brass sheets, having different mechanical characteristics, has been studied by the multiple tensile testing (MTT) method. In this method, different test pieces of various gage lengths were employed. The total energy required to tear the specimens was assumed to be composed of two components; one associated with uniform plastic deformation, which occurs in the work-hardening range of the material, and the other with post-uniform deformation and tearing which leads to the failure of the specimens. Tearing energy was calculated by plotting the total energy divided by the specimen cross-sectional area against the gage length of the specimens. In this plot, a straight line is obtained, the intercept of which gives the value of tearing energy. The results have been analyzed on the basis of the mechanical characteristics of the materials.  相似文献   

2.
More often than not, better formability in the simple tension test implies better formability performance in other stretching modes, especially in hole expansion performance since deformation in the hole expansion test is perceived to be in the same simple tension deformation mode. However, when the hole expansion formability is evaluated particularly for the twinning induced plasticity (TWIP) steel, its performance is so poor compared to other automotive steels, even though the TWIP steel has significantly superior formability in the simple tension test. Therefore, hole expansion formability was experimentally and numerically studied for advanced high-strength grade steel sheets, TWIP940 and a transformation induced plasticity (TRIP) 590 steel sheet, as well as a high-strength grade 340R steel sheet, particularly in conjunction with formability in the simple tension test and its surface condition sensitivity. In order to characterize mechanical properties, simple tension tests were performed to determine anisotropic properties and strain rate sensitivities. To account for macro-crack formation, an inverse calibration method based on a damage model utilizing a triaxiality-dependent fracture criterion and hardening behavior with stiffness deterioration was developed. In this approach, the damage model was inversely calibrated by performing numerical simulations and experiments for the simple tension test (with specimens prepared by milling and punching). Then, the damage model was applied to formability study in the hole expansion test. The damage model along with the anisotropic yield function Hill (1948) incorporated into the ABAQUS/Explicit FEM code performed well to predict hole expansion ratios (HER) and their surface condition sensitivity, elucidating the cause of the lukewarm hole expansion performance and strong surface condition sensitivity of the TWIP steel compared to the others.  相似文献   

3.
小冲杆试验技术可以近似无损地测试材料的力学性能.本文对几十种材料进行了小冲杆试验研究,对小冲杆试样的抽向挠度δ与拉伸断后伸长率A进行了经验关联.研究表明,对于试验中涉及的几十种材料,二者之间没有统一的线性相关公式,但可以按材料的杭拉强度和屈强比将材料分类,然后分别对δ和A进行线性关联.对于抗拉强度小于600MPa的材料...  相似文献   

4.
Fastener holes used in the mechanical joints are vulnerable to failure due to development of stress concentration at their edges. Inducing compressive residual stresses by different techniques has been the most common method to reinforce the holes to date. In this work, a new reinforcement technique called internal torsion, which can be classified as a localized severe plastic deformation process, is proposed as an alternative to the cold expansion pre-stressing. A special specimen is designed to represent the behavior of a typical fastener hole during the internal torsion process. The deformation of the specimen in the vicinity of its hole surface is studied by introducing a parametric kinematically admissible velocity field (PKAVF) within the deformation affected zone (DAZ). Calibration of the parameters in relation to the deformation of the material during the process is done by an elastic-plastic finite element solution that was performed in ABAQUS for a specimen made of interstitial free (IF) steel. Numerical analysis of the deformation is carried out to understand the process and to estimate the optimum process parameters. Subsequently, the calibrated model is used in an upper-bound solution of the problem to estimate the torque–twist response of the specimen during internal torsion. Finally, the results of upper-bound solution are compared with those of finite element analysis. There is a good agreement between the upper-bound solution and finite element results, which verifies validity of the calibrated velocity field model and the upper-bound solution based on the model for the internal torsion problem.  相似文献   

5.
An experimental method is described which can measure the direction and magnitude of residual and applied stress in metals. The method uses optical interference to measure the permanent surface deformation around a shallow spherical indentation in a polished area on the metal specimen. The deviation from circularly symmetrical surface deformations is measured at known values of applied stress in calibration specimens. This deviation from symmetry can then be used to determine the direction and magnitude of tensile residual stress in specimens of the same material. Determination of compressive residual stress is more limited. A model of the indentation process is offered which qualitatively describes experimental results in 4340 steel for both tensile and compressive stress. The model assumes that the deformation around an indentation os controlled by stresses analogous to those around a hole in an elastic plate. Various conditions are discussed which affect the indentation process and its use to measure stress, including (a) the rigidity of support of the indentor and specimen, (b) the size and depth of the indentation, (c) the uniaxial stress-strain behavior of the specimen material.  相似文献   

6.
The 3D image correlation technique is used for full field measurement of strain (and strain rate) in compression and tensile split Hopkinson bar experiments using commercial image correlation software and two digital high-speed cameras that provide a synchronized stereo view of the specimen. Using an array of 128 × 80 (compression tests) and 258 × 48 (tensile tests) pixels, the cameras record about 110,000 frames per second. A random dot pattern is applied to the surface of the specimens. The image correlation algorithm uses the dot pattern to define a field of overlapping virtual gage boxes, and the 3-D coordinates of the center of each gage box are determined at each frame. The coordinates are then used for calculating the strains throughout the surface of the specimen. The strains determined with the image correlation method are compared with those determined from analyzing the elastic waves in the bars, and with strains measured with strain gages placed on the specimens. The system is used to study the response of OFE C10100 copper. In compression tests, the image correlation shows a nearly uniform deformation which agrees with the average strain that is determined from the waves in the bars and the strains measured with strain gages that are placed directly on the specimen. In tensile tests, the specimen geometry and properties affect the outcome from the experiment. The full field strain measurement provides means for examining the validity and accuracy of the tests. In tests where the deforming section of the specimen is well defined and the deformation is uniform, the strains measured with the image correlation technique agree with the average strain that is determined from the split Hopkinson bar wave records. If significant deformation is taking place outside the gage section, and when necking develops, the strains determined from the waves are not valid, but the image correlation method provides the accurate full field strain history.  相似文献   

7.
A novel solution to overcome the shortcoming of conventional tensile test machines in dealing with unsymmetrical materials and off-axis testing of composites is presented. Conventional testing machines are designed on the basis of subjecting a specimen to axial load to determine the stiffness and strength of the material. For specimens with unsymmetrical cross-section this method is no longer valid due to induced additional bending stresses. To overcome this problem a novel tensile test machine was designed, which allows bending deformation, thus subjecting the specimen to pure tension instead of axial loading. To validate the design, the machine was fabricated and employed for tensile testing of an aluminum specimen with unsymmetrical cross-section. The comparison of test results from a conventional machine and from analytically calculations, based on pure tension, reveals that conventional machine generates significant errors, while the results from new machine are in good agreement. The machine was then used to test a functionally graded beam.  相似文献   

8.
采用传统分离式Hopkinson压杆进行M型试样的动态拉伸实验,可避免试样与杆的连接问题,但该方法并未得到发展和验证。本文中,采用有限元数值分析和实验方法,对M型试样动态拉伸实验进行分析和改进。结果表明:(1)改进的封闭M型试样,可以增强试样整体刚度,有效减少试样畸变引起的附加弯矩对拉伸标段的影响,方便通过Hopkinson压杆加载实现一维拉伸变形;(2)采用试样刚度系数修正法,可消除M型试样整体结构的弹性变形对测试的影响,精确获得试样拉伸标段的塑性应变;(3)高加载率下,建议采用波形整器加载,可显著减少试样结构引起的载荷震荡现象、改善两端的应力平衡,获得准确的动态拉伸应力应变曲线,实现5 900 s?1甚至更高应变率下的动态拉伸实验。研究方法可为M型试样拉伸实验设计和应用提供参考。  相似文献   

9.
Gu  G. H.  Moon  J.  Park  H. K.  Kim  Y.  Seo  M. H.  Kim  H. S. 《Experimental Mechanics》2021,61(8):1343-1348
Background

Measuring true stress–strain curve over a large-strain-range is essential to understand mechanical behavior and simulate non-linear plastic deformation. The digital image correlation (DIC) technique, a non-contact full-field optical measurement technique, is a promising candidate to obtain a long-range true stress–strain curve experimentally.

Objective

This paper proposes a method for measuring true stress–strain curves over a large-strain-range during tensile testing using DIC.

Methods

The wide-strain-range true stress–strain curves of dual-phase and low carbon steels were extracted on the transverse direction in the neck region. The axial strain on the neck section was estimated by averaging the inhomogeneous deformation on the cross-section of the tensile specimen. The true stress was calculated from the engineering stress and the cross-sectional area of the neck.

Results

The validity of the proposed method was assessed by comparing the experimental load–displacement responses during tensile testing with the finite element method (FEM) simulation results. The stress and strain on the neck section estimated using the FEM and DIC, respectively, were proven to satisfy the uniaxial condition and successfully obtained.

Conclusions

The experimental results agree well with the FEM results. The proposed concept can be applied to various deformation modes for accurately measuring long-range true stress–strain curves.

  相似文献   

10.
A basic ductile fracture testing program is carried out on specimens extracted from TRIP780 steel sheets including tensile specimens with a central hole and circular notches. In addition, equi-biaxial punch tests are performed. The surface strain fields are measured using two- and three-dimensional digital image correlation. Due to the localization of plastic deformation during the testing of the tensile specimens, finite element simulations are performed of each test to obtain the stress and strain histories at the material point where fracture initiates. Error estimates are made based on the differences between the predicted and measured local strains. The results from the testing of tensile specimens with a central hole as well as from punch tests show that equivalent strains of more than 0.8 can be achieved at approximately constant stress triaxialities to fracture of about 0.3 and 0.66, respectively. The error analysis demonstrates that both the equivalent plastic strain and the stress triaxiality are very sensitive to uncertainties in the experimental measurements and the numerical model assumptions. The results from computations with very fine solid element meshes agree well with the experiments when the strain hardening is identified from experiments up to very large strains.  相似文献   

11.
An epoxy resin containing excessive plasticizer was developed and characterized. The material, which deforms viscously at room temperature, has optical properties that depend on stress and strain. A tensile specimen was prepared from the epoxy resin so that the mechanical and optical properties of the epoxy resin could be characterized. The elastic and plastic behavior was determined at 37°C using tensile stresses between 4 and 26 MPa. The birefringence was also recorded as a function of time and stress. From these results, a photoviscoelastic constitutive equation was constructed to describe the dependence of the birefringence on stress and strain. The constitutive equation was then applied to study the deformation of a tensile specimen containing a central circular hole. By using the isochromatic fringes in combination with the isoclinic, the time-dependent variation of the stress field in the specimen was solved.  相似文献   

12.
李婧宇  朱飞鹏  雷冬 《力学季刊》2015,36(3):434-441
基于三维数字图像相关方法(3D-DIC)的拉伸实验研究了铸铁的拉伸力学性能,分别得到了应力-应变曲线、弹性模量、抗拉强度、延伸率等拉伸力学性能参数.将3D-DIC应力-应变的测试结果与目前实验中使用广泛的接触式引伸计方法的实验结果作了对比,得到两者的应力-应变曲线基本重合,弹性模量相差不超过4%.此外,还对3D-DIC和机械引伸计的应变绝对误差和相对误差作了详细比较,实验表明3D-DIC在铸铁拉伸力学性能测试中具有足够的应变测量精度,完全可以取代传统引伸计成为一种有效的非接触式变形测量手段.  相似文献   

13.
对不同晶粒大小、不同特征尺寸的H62黄铜箔进行微拉伸实验,分析试样晶粒大小和特征尺寸对材料变形行为的影响。随着晶粒尺寸的减小,试样拉伸屈服应力逐渐增大,晶粒尺寸对屈服应力的影响满足Hall-Petch细晶强化关系;屈服强度随厚度的减小先减弱而后增强,随宽度的减小而增强;晶体塑性理论、表面层模型可以解释延伸率、抗拉强度随比表面积的增大而减小的现象。在实验数据的基础上通过修正双线性模型建立微塑性成形本构模型。  相似文献   

14.
扭转是一种常用的冷作硬化方法。本文通过实心圆轴扭转实验和预扭试件的单向拉伸实验,研究了扭转塑性变形程度对6063铝合金拉伸力学性能的影响。通过理论研究和硬度分析探究了造成这一影响的内在机理。结果表明,试件扭转后其内部形成的以屈服强度为特征参数的梯度结构,是造成预扭试件力学性能得到改善的根本原因。并且,扭转不同的角度,材料内部产生的梯度结构也是不同的。而不同的梯度结构对试件力学性能的影响则表现为后继拉伸屈服强度随预扭角度的增大而增大。为了预测预扭试件的后继拉伸力学行为,验证前述结论的正确性,建立了由内到外屈服强度逐渐变化的有限元模型。此模型代表了预扭转变形试件,对其施加位移载荷,模拟后继单向拉伸加载过程。模拟所得材料力学性能随扭转角的变化趋势与实验结果基本吻合,从而验证了扭转冷作硬化后,圆轴试件内部产生了以屈服强度为特征参数的梯度结构这一结论。同时,也提供了一种有效的预测材料扭转后拉伸力学性能的数值模拟方法。  相似文献   

15.
16.
In this paper, a dual-light-path optical strain gauge (DOSG) that measures surface deformation in real time using diffraction grating and position-sensitive detectors (PSDs) is proposed. In the DOSG, a beam splitter cube is utilized to divide an incident beam into two beams. One is applied in the main light path to measure specimen deformation, while the other is used in the assistant light path to eliminate disturbances from out-of-plane rotation and displacement of the specimen. Further, the disturbances as systemic errors are theoretically analyzed, and eliminated with the assistant light path during the experiment. Meanwhile, random errors, which are primarily due to ambient light, beam power, irradiation position and incidence angle, are studied to improve measurement accuracy. Benefiting from the utility of PSDs, the developed system achieves a strain resolution of 1 με. In experiments, uniaxial tensile tests of aluminum alloy and Ni-based alloy confirm that the relative error of its elastic moduli is less than 3.4%, and the stress-strain curve exhibits a R-square value greater than 0.9951. In addition, the DOSG is extended to determine the mechanical behavior of Ni-based alloy at high temperatures up to 800 °C by combining it with an induction-heating apparatus and a tensile testing machine. These results verify that the proposed DOSG is feasible and reliable, with good potential for high-precision deformation measurement in both room temperature and high-temperature environments.  相似文献   

17.
It is in general challenging to characterize planar mechanical properties of extremely soft tissues such as cell-seeded collagen gels. One of the difficulties is related to premature failure of specimens. This issue may be resolved by employing fillets on stress-concentrated spots of the specimen. The existence of fillets, however, complicates the estimation of stress at the center of the specimen where stiffness data are collected. In this study, cruciform rubber specimens with two types of fillets (general vs. cut-in fillets) at the intersections of perpendicular arms were prepared and subjected to planar biaxial mechanical testing, aiming at investigating how the fillets affect the estimation of mechanical properties of cruciform specimens. Digital image correlation was used to analyze full-field deformation in the central region of the specimens. Finite element analysis with a Neo-Hookean model was performed to simulate the full-field deformation under the same experimental boundary conditions. The strain distribution for each specimen geometry obtained by finite element analysis was found to be in good agreement with that analyzed by digital image correlation, validating the finite element models. Finite element simulation showed that the greatest value of the maximum principal strain decreased with increasing the fillet radius regardless of the fillet type. Increasing the fillet radius, in general, also reduced the strain field uniformity in the central region. Compared with general fillets, however, the use of cut-in fillets provided greater strain field uniformity given the same fillet radius. Finite element analysis was also used to estimate effective transverse length required to convert tensile force at the boundary to local stress at the center. It was found that the effective transverse length for each specimen geometry remained relatively constant if the specimen was not excessively deformed (i.e., global equibiaxial stretch ≤ 1.2). We suggest using cut-in fillets at the intersections of perpendicular arms when preparing cruciform specimens for testing extremely soft tissues.  相似文献   

18.
Inverse methods offer a powerful tool for the identification of the elasto-plastic material parameters. One of the advantages with respect to classical material testing is the fact that those inverse methods are able to deal with heterogeneous deformation fields. The basic principle of the inverse method that is presented in this paper, is the comparison between experimentally measured strain fields and those computed by the finite element (FE) method. The unknown material parameters in the FE model are iteratively tuned so as to match the experimentally measured and the numerically computed strain fields as closely as possible. This paper describes the application of an inverse method for the identification of the hardening behavior and the yield locus of DC06 steel, based on a biaxial tensile test on a perforated cruciform specimen. The hardening behavior is described by a Swift type hardening law and the yield locus is modeled with a Hill 1948 yield surface.  相似文献   

19.
基于液压伺服高速加载系统,发展了一种材料双轴拉伸力学性能测试技术。利用锥面接触导向驱动方法,把加载锤竖直方向的驱动力转化为水平方向的双轴驱动力,从而实现对十字形试样平面双轴加载。借助有限元数值模拟手段优化了锥面接触角和十字形试样尺寸。当接触锥角为45°时,既有较好的水平驱动转化效率,同时又保持较小的接触力,确保水平驱动加载各组件在弹性变形范围内,可多次重复使用。确定了加载臂狭缝个数、狭缝与减薄区边缘长度和标距段厚度等试样设计关键参数,在十字形试样测试标距段内实现了均匀变形。设计了测力夹持一体化导杆和非接触光学全场应变测试系统,准确获得了试样的应力和应变。利用此平面双轴拉伸加载装置,开展2024-T351铝合金板单轴拉伸实验和激光探测同步性验证实验,验证装置设计的可行性;开展铝合金板材在不同加载速率下的双轴拉伸实验,得到在双轴加载下铝合金板材应力应变曲线,并与单轴加载下实验结果进行了对比分析。  相似文献   

20.
The paper describes experiments to investigate the frictional properties of a Titanium alloy (Ti-6Al-4V) and a Nickel alloy (Udimet 720) under representative engineering conditions. Flat fretting pads with rounded corners were clamped against a flat specimen and a servo-hydraulic tensile testing machine was used to apply cyclic displacement to the specimen. Slip displacement between the specimen and pad was measured remotely using an LVDT and locally using digital image correlation. The latter approach allowed accurate determination of the tangential contact stiffness from frictional hysteresis loops. The results obtained show that the contacts are significantly less stiff than would be predicted by a smooth elastic contact analysis. A finite element model of the experimental contact geometry was constructed and it was shown that good agreement with the experimental measurements of contact stiffness can be obtained with a suitable choice of elastic modulus for a compliant surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号