首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(butylene terephthalate)/silica nanocomposites were prepared by in situ polymerization of terephthalic acid, 1,4-butanediol and silica. Transmission electron microscopy (TEM) was used to examine the quality of the dispersion of silica in the PBT matrix. The non-isothermal crystallization behavior of pure PBT and its nanocomposites was studied by differential scanning calorimetry (DSC). The results show that the crystallization peak temperatures of PBT/silica nanocomposites are higher than that of pure PBT at a given cooling rate. The values of halftime of crystallization indicate that silica could act as a heterogeneous nucleating agent in PBT crystallization and lead to an acceleration of crystallization. The non-isothermal crystallization data were analyzed with the Avrami, Ozawa, and Mo et al. models. The non-isothermal crystallization process of pure PBT and PBT/silica nanocomposites can be best described by the model developed by Mo et al. According to the Kissinger equation, the activation energies were found to be ?217.1, ?226.4, ?259.2, and ?260.2 kJ/mol for pure PBT and PBT/silica nanocomposites with silica weight content of 1, 3 and 5 wt%, respectively.  相似文献   

2.
Attapulgite (AT) was modified by grafting with butyl acrylate (BA) via polymerizations initiated by Gamma radiation. Polypropylene (PP)/AT nanocomposites were synthesized via melt extrusion in a twin-screw extruder. Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TG) were used to assess the structure of the hybrid materials and the dispersion of AT was verified by transmission electron microscopy (TEM). The crystallization kinetics of PP/AT nanocomposites were investigated by differential scanning calorimetry (DSC) and analyzed by using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PP. Step-scan differential scanning calorimetry (SDSC) was used to study the influence of AT on the crystallization and subsequent melting behavior. The results revealed that PP and PP/AT nanocomposites experienced multiple melting and secondary crystallization processes during heating. The melting behaviors of PP and PP/AT nanocomposites varied with the variation of crystallization temperature and AT content.  相似文献   

3.
The crystallization kinetics of poly(ethylene terephthalate)/attapulgite (AT) nanocomposites and their melting behaviors after isothermal crystallization from the melt were investigated by DSC and analyzed using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PET. Step-scan differential scanning calorimetry was used to study the influence of AT on the crystallization and subsequent melting behavior in conjunction with conventional DSC. The results revealed that PET and PET/AT nanocomposites experience multiple melting and secondary crystallization processes during heating. The melting behaviors of PET and PET/AT nanocomposites varied in accordance with the crystallization temperature and shifted to higher temperature with the increase of AT content and isothermal crystallization temperature. The main effect of AT nanoparticles on the crystallization of PET was to improve the perfection of PET crystals and weaken its recrystallization behavior.  相似文献   

4.
Nano-Sb2O3 particles and brominated epoxy resin (BEO) powders were dispersed in poly (butylene terephthalate) (PBT) by high energy ball milling (HEBM). Then the nanocomposites were prepared by a twin screw extruder. The influence of the nano-Sb2O3 particles on the crystallization, thermal stability, flame retardancy and mechanical properties of the PBT/BEO/nano-Sb2O3 composites were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 tests and scanning electron microscopy (SEM). The results showed that the nano-Sb2O3 particles improved the crystallizability, thermal stability and flame retardancy properties of the PBT/BEO/nano-Sb2O3 composites. When the content of nano-Sb2O3 particles was 2.0?wt%, the LOI of nano-Sb2O3/BEO/PBT composites increased from 22.0 to 27.8 and the tensile strength reached its maximum value (62.44?MPa), which indicated that the optimum value of flame retardancy and mechanical properties of PBT/BEO/nano-Sb2O3 composites were obtained.  相似文献   

5.
The crystallization process of poly(ethylene terephthalate)/silica nanocomposites were investigated by differential scanning calorimetry (DSC) and then analyzed using the Avrami method. The results indicated that the crystallization of pure poly(ethylene terephthalate) (PET) was fitted for thermal nucleation and three‐dimensional spherical growth throughout the whole process, whereas the crystallization of PET/silica nanocomposites exhibits two stages. The first stage corresponds to athermal nucleation and three‐dimensional spherical growth, and the second stage corresponds to recrystallization caused by the earlier spherulites impingement. The crystallization rate increases remarkably and the activation energies decrease considerably when silica nanoparticles are added. The subsequent melting behavior of the crystallized samples shows that the melting point (T m) of nanocomposites is higher than that of pure PET, which might be caused by two factors: (1) The higher melting point might be due to some hindrance to the PET chains caused by the nanoparticles at the beginning of the melting process; (2) it might also be the case that more perfect crystals can be formed due to the higher crystallization temperatures and lower activation energies of PET/silica nanocomposites.  相似文献   

6.
The kinetics of isothermal melt crystallization of poly(trimethylene terephthalate) (PTT)/poly(butylene terephthalate) (PBT) blends were investigated using differential scanning calorimetry (DSC) over the crystallization temperature range of 184–192°C. Analysis of the data was carried out based on the Avrami equation. The values of the exponent found for all samples were between 2.0 and 3.0. The results indicated that the crystallization process tends to be two‐dimensional growth, which was consistent with the result of polarizing light microscopy (PLM). The activation energies were also determined by the Arrhenius equation for isothermal crystallization. The values of ΔE of PTT/PBT blends were greater than those for PTT and PBT. Lastly, using values of transport parameters common to many polymers (U*=6280 J/mol, T =T g – 30), together with experimentally determined values of T m 0 and T g, the nucleation parameter, K g, for PTT, PBT, and PTT/PBT blends was estimated based on the Lauritzen–Hoffman theory.  相似文献   

7.
Polypropylene/multiwalled carbon nanotubes (PP/MWNTs) nanocomposites were prepared by a melt compounding process. The morphology and nonisothermal crystallization of these nanocomposites were investigated by means of optical microscopy, scanning electron microscopy, and differential scanning calorimetry. Scanning electron microscope micrographs of PP/MWNTs composite showed that the MWNTs were well dispersed in the PP matrix and displayed a clear nucleating effect on PP crystallization. Avrami theory, modified by Jeziorny and Mo's method, was used to analyze the kinetics of the nonisothermal crystallization process. It was found that the addition of MWNTs improved the crystallization rate and increased the peak crystallization temperature of the PP/MWNTs nanocomposites as compared with PP. The results show that the Jeziorny theory and Mo's method successfully describe the nonisothermal crystallization process of PP and PP/MWNTs nanocomposites.  相似文献   

8.
《Composite Interfaces》2013,20(3):203-215
Dodecyl amine-functionalized graphene oxide (DA-GO) was obtained via an amidation reaction. The results of X-ray diffraction and Fourier-transform infrared spectroscopy verified that long alkyl chains of DA were successfully grafted on the GO sheets. Transmission electron microscope and scanning electron microscope techniques illustrated that homogeneously dispersed DA-GO/high-density polyethylene (HDPE) nanocomposites were obtained. The effects of DA-GO on the non-isothermal crystallization of HDPE were then investigated by differential scanning calorimetry (DSC) at various cooling rates (2, 5, 10, and 20?°C/min). Significant increase in the onset crystalline temperature (To) and the peak crystallization temperature (Tp) of HDPE incorporating DA-GO indicated the strong nucleating ability of DA-GO. The investigation of half-time crystallization time (t1/2) demonstrated that crystallization rate of HDPE consisting of DA-GO is faster than that of pure HDPE at a given cooling rate. Ozawa, Avrami, and the combined Avrami–Ozawa methods (Mo) were used for analyzing experimental data. The Mo approach was successful in describing the non-isothermal crystallization process of DA-GO/HDPE nanocomposites. The results indicated that low DA-GO content accelerates the crystallization of HDPE, while higher content hinders the crystallization of HDPE.  相似文献   

9.
The crystallization behavior and crystal morphology of the poly(trimethyl terephthalate) (PTT)/poly(butylene terephthalate) (PBT) blends were investigated by means of differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and polarized light microscopy (PLM) techniques. It was found that the two components crystallized simultaneously in the crystalline regions. The degree of crystallinity changed with PTT content. Crystalline properties were worse when the ratio of PBT and PTT contents was close to 50:50, but were better when PBT content was greatly different from PTT content.  相似文献   

10.
《Composite Interfaces》2013,20(8-9):787-803
Poly(amide)-6/clay nanocomposites are investigated by means of modulated temperature differential scanning calorimetry. The importance of polymer–filler interaction is explored by comparing nanocomposites based on untreated and organically modified clay. During quasi-isothermal crystallization experiments, an excess contribution is observed in the recorded heat capacity signal due to reversible melting and crystallization. The magnitude of this excess contribution depends on the nanocomposite investigated. We suggest that it is directly related to the segmental mobility of the polymer chains in the interphase region. As such, the magnitude of this excess contribution can be used to quantify the efficiency of the polymer–clay interaction. Depending on the clay type used, differences in interfacial interaction can be achieved, which is of great importance with respect to the improvement of material properties. Based on thermal analysis results, a simple interphase model is proposed that is able to account for both the thermal and mechanical properties of poly(amide)-6/clay nanocomposites.  相似文献   

11.
The synergistic effects of poly(ethylene glycol) (PEG) and polyhedral oligomeric silsesquioxanes (POSS) on the crystallization behavior of semicrystalline poly(L-lactide) (PLLA) were systemically investigated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Initially, the influences of PEG and POSS, individually, on PLLA crystallization were studied. The results indicated that PEG, as an efficient plasticizer, enhanced the mobility of the PLLA chains, resulting in decreasing of the glass transition temperature. The enhanced crystallization capacity of PLLA was strongly dependent on the molecular weight and content of the PEG, increasing with decreasing of the molecular weight and increasing of the PEG content. The experimental results also indicated that POSS was a heterogeneous nucleating agent, promoting the crystallization of PLLA. The synergistic effects of PEG and POSS on PLLA crystallization were then analyzed. The results showed that in the presence of PEG and POSS the crystallinity of PLLA was further enhanced due to their synergistic effects.  相似文献   

12.
The nonisothermal crystallization behavior of polypropylene (PP) and PP-fullerene (C60) nanocomposites was studied by differential scanning calorimetry (DSC). The kinetic models based on the Jeziorny, Ozawa, and Mo methods were used to analyze the nonisothermal crystallization process. The onset crystallization temperature (Tc), half-time for the crystallization (t1/2), kinetic parameter (F(T)) by the Mo method and activation energy (ΔE) estimated by the Kissinger method showed that C60 accelerates the crystallization of PP, implying a nucleating role of C60. Furthermore, due to the reduced viscosity of PP by adding 5% C60, the parameters of crystallization kinetics for the PP-5%C60 nanocomposites changed remarkably relative to that of neat PP and when lower contents of C60 were added to PP.  相似文献   

13.
Polyamide 66(PA66)/montmorillonite nanocomposites were prepared via direct melt compounding. The nonisothermal crystallization of PA66 and PA66/MMT nanocomposites were investigated by differential scanning calorimetry. The results show that MMT platelets play a competing role in the crystallization process of nylon 66. On the one hand, they can act as a nucleator for the PA66 matrix, accelerating the crystallization rate; on the other hand, they retard the crystal/spherulite growth, especially for nanocomposites with higher MMT content. The analysis results using Jeziorny and Mo equations verify the dual actions of the nucleation and the obstruction of crystallization of MMT in the PA66 matrix. Kissinger's method was used to obtain the activation energy of the crystallization process; the results confirm that the incorporation of MMT causes the above actions.  相似文献   

14.
Graphene (GN)-filled polylactic acid (PLA) nanocomposites were prepared through a solution blending method with GN weight percent ranging from 0.5 to 2?wt%. Rheological, melting and crystallization behaviors of the prepared PLA/GN nanocomposites were investigated by means of dynamic rheological measurements and differential scanning calorimetry (DSC). The shear viscosities of the PLA/GN nanocomposites decreased with increasing GN content, which was remarkably different from previous reports on the modifications using traditional nanofillers (e.g., clay, carbon nanotubes, etc.). The nonisothermal melt crystallization kinetic analysis suggested that GN served as a nucleating agent and could considerably promote the PLA’s crystallization through heterogeneous nucleation. Our findings suggested that at relatively low cooling rates (??≤?10?°C/min) even a small amount of GN promoted the nucleation and considerably increased the crystallization rate. However, the crystallinity began to decrease at higher cooling rates (e.g., ??≥?20?°C/min), especially when the GN content was high (e.g., 2?wt%), possibly owing to the GN aggregation effect considering PLA is a slowly crystallizing polymer.  相似文献   

15.
The PA66-based nanocomposites containing surface-modified nano-SiO2 were prepared by melt compounding. The interface structure formed in composite system was investigated by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The influence of interface structure on material's mechanical and thermal properties was also studied. The results indicated that the PA66 chains were attached to the surface of modified-silica nanoparticles by chemical bonding and physical absorption mode, accompanying the formation of the composites network structure. With the addition of modified silica, the strength and stiffness of composites were all reinforced: the observed increase depended on the formation of the interface structure based on hydrogen bonding and covalent bonding. Furthermore, the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) showed that the presence of modified silica could affect the crystallization behavior of the PA66 matrix and lead to glass transition temperature of composites a shift to higher temperature.  相似文献   

16.
The morphology and composition of organic montmorillonites are critical for their dispersion in polymer matrixes. In the current study, the pristine montmorillonite (MMT) was first surface modified with silane and then intercalated using two kinds of intercalating agents in supercritical carbon dioxide (scCO2). The obtained OMMTs with tunable morphology and composition, together with pristine MMT and commercial MMT, were introduced into poly(butylene terephthalate) (PBT) to investigate the MMTs dispersion in the PBT matrix and the final properties of the PBT/MMT nanocomposites. The structure of the different MMTs and their dispersion in the PBT matrix were characterized by SEM and TEM, respectively. The crystallization behavior, storage moduli and loss factors of the PBT/MMT nanocomposites were also investigated.  相似文献   

17.
Influence of nanosilica on surface properties of poly(butylene terephthalate) was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). FTIR results indicated that surface groups of silica have some interfacial interactions and bonding with carboxyl or hydroxyl end groups of PBT chains. AFM and SEM figures of the resultant nanocomposites illustrated increased surface roughness compared to pure PBT. Optical properties of nanocomposite films were finally determined by the aid of reflectance spectrophotometer.  相似文献   

18.
PTT/EPDM-g-MA (80/20 w/w) nanocomposites were prepared by melt mixing of poly(trimethylene terephthalate) (PTT), ethylene-propylene-diene copolymer grafted with maleic anhydride (EPDM-g-MA), and organoclay. The blend nanocomposites show typical sea-island morphologies. The nonisothermal crystallization kinetics of pure PTT and 80/20 (w/w) PTT/EPDM-g-MA blends with various amounts of the clay were extensively studied by differential scanning calorimetry (DSC). The Avrami, Ozawa, and Mo methods were used to describe the nonisothermal crystallization process of pure PTT and 80/20 (w/w) PTT/EPDM-g-MA blends with various amounts of the clay. Avrami analysis results show that the crystallization rates of 80/20 (w/w) PTT/EPDM-g-MA blends with the clay were faster than those of pure PTT or PTT/EPDM-g-MA blends without clay, which indicates that the clay particles promote crystallization effectively, in agreement with the Mo analysis results. Ozawa analysis can describe the nonisothermal crystallization of pure PTT very well but was rather inapplicable to the 80/20 (w/w) PTT/EPDM-g-MA blends with various amounts of the clay.  相似文献   

19.
The nonisothermal crystallization behaviors for poly(ethylene 2,6‐naphthalate) (PEN) and poly(ethylene 2,6‐naphthalate) (PEN)/montmorillonite nanocomposites prepared by melt intercalation were investigated using differential scanning calorimetry (DSC). The Jeziorny, Ozawa, Ziabicki, and Kissinger models were used to analyze the experimental data. Both the Jeziorny and the Ozawa models were found to describe the nonisothermal crystallization processes of PEN and PEN/montmorillonite nanocomposites fairly well. The results obtained from the Jeziorny and the Ozawa analysis show that the montmorillonite nanoparticles dispersed into PEN matrix act as heterogeneous nuclei for PEN and enhance its crystallization rate, accelerating the crystallization, but a high‐loading of montmorillonites restrain the crystal growth of PEN. The analysis results from the Ziabicki and the Kissinger models further verify the dual actions stated above of the montmorillonite nanoparticles in PEN matrix.  相似文献   

20.
Silica graft poly(propylene) (silica‐g‐PP) nanocomposites were successfully prepared by radical grafting copolymerization and ring‐opening reaction. Their thermal properties were studied by step‐scan differential scanning calorimetry (SDSC) and thermogravimetric analysis (TGA). The exothermic peaks in the IsoK baseline (Cp,IsoK, nonreversing signal) of SDSC reveal that PP and silica‐g‐PP nanocomposites undergo melting‐recrystallization‐remelting during heating. The peak temperatures of recrystallization and remelting shift upward with the existence of nanoparticles in the PP matrix. The thermal degradation kinetics of silica‐g‐PP nanocomposites were investigated using nonisothermal TGA and the Flynn‐Wall‐Ozawa method. The results indicate that the thermal stability was significantly improved with increasing silica content, mainly because of the physical‐chemical adsorption of the volatile degradation products on the nanoparticles that delays their volatilization during decomposition, and the covalent interaction between nanoparticles and PP chains, which will also reduce the breakage of PP backbone chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号