首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shear and extensional rheology of polypropylene (PP)/organoclay nanocomposites in the presence of various maleic anhydride grafted polypropylene (PP-g-MA) compatibilizer concentrations were investigated. The PP nanocomposites were prepared via direct melt intercalation in an internal mixer. The structures of the nanocomposites were characterized by X-ray diffraction (XRD) and scanning electron microscopy. It was found that both the compatibilized and uncompatibilized nanocomposites could form an intercalated structure. However, the organoclay particles can disperse well only in the compatibilized systems. The linear viscoelastic properties, including the storage modulus G′ and complex viscosity η* were very sensitive to the microstructure of the nanocomposites. The extensional viscosities of PP nanocomposites were enhanced under a low deformation rate with increasing compatibilizer content and displayed a lack of superposition for different strain rates. It was proposed that the lack of superposition might originate from the formation of a three-dimensional organoclay network, which decreased in its complexity and strength as the deformation rate increased.  相似文献   

2.
Nanocomposites based on polypropylene (PP) and multiwall carbon nanotubes (MWNT) have been prepared through melt blending. Scanning electron microscopy (SEM) observations indicate that nanotubes were dispersed almost homogeneously throughout the matrix; however, some aggregates were also observed at high nanotubes loading. Rheological studies showed that at low shear rates, there is an increase in steady shear viscosity and shear stress of samples with increasing of nanotubes concentration. However, at high shear rates nanocomposites behave like pure PP. The activation energy of flow showed an increasing trend and has a maximum at 1wt% MWNT content. It was found that incorporation of nanotubes causes a remarkable decrease in surface and volume resistivity values of the polymeric matrix. The presence of CNTs improved the tensile and flexural properties of the polymeric matrix.  相似文献   

3.
Long glass fiber (LGF)-reinforced polypropylene (PP) was prepared using a self-designed impregnation device. The effect of dicumyl peroxide (DCP) and maleic anhydride (MA) content on the compatibilizer, PP grafted with maleic anhydride (PP-g-MA), was investigated by means of scanning electron microscopy (SEM) and mechanical properties. The experimental results demonstrated that the increase of DCP and MA could effectively improve the interfacial interaction between PP and GF. Good interfacial adhesion between PP and GF in PP/ PP-g-MA /LGF composites was observed from SEM studies for the higher contents of MA. The best mechanical properties of PP/ PP-g-MA /LGF(30%) composites were obtained when the content of DCP and MA were 0.4 and 0.8 wt%, respectively. The storage modulus of the PP/PP-g-MA/LGF composites increased and then decreased with the content of MA. When the content of MA was 0.8 wt%, tan δ had the lowest value, indicating that the corresponding composites had the best compatibility.  相似文献   

4.
Ternary nanocomposites based on polyamide-6, maleated butadiene (core) -acrylonitrile-styrene (shell) rubber particles (PB-g-SAM), and modified montmorillonite (organoclay) were prepared by a twin-screw extruder. The glassy shell of the core-shell particles can act as a barrier which can resist the entrance of clay into the rubber phase. The influence of mixing sequence on the phase morphology and mechanical properties were studied. The microstructure of the ternary nanocomposites was characterized by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. It was found that the clay in the polyamide nanocomposites was partially exfoliated, exhibiting a mixture of exfoliated structures. The organoclay plates affected the interfacial adhesion between the polyamide-6 and the core-shell particles. The location of the organoclay plates in the blends with different mixing sequences produced differences of the mechanical properties. The results of mechanical testing revealed that the optimum mixing sequence to achieve balanced mechanical properties was mixing the polyamide-6 and organoclay first followed by mixing with the core-shell particles.  相似文献   

5.
Composite materials consisting of poly(butylene succinate) (PBS) and montmorillonite (MMT), modified to various extents using trihexyltetradecylphosphonium chloride (THTDP) cations, were prepared using a simple melt intercalation technique. The surfactant contents were varied, i.e. 0.4, 0.6, 0.8, 1.0, and 1.2 times the cation exchange capacity (CEC) of the MMT. The intercalation of the surfactant molecules into MMT layers, confirmed by the increase in interlayer spacing and significant changes in the morphology of the modified MMT, facilitated the dispersion of the clay in the PBS matrix. The properties of the PBS-based composites were changed with increasing surfactant content. The melting and crystallization temperatures increased and the degree of crystallinity (χc) decreased. The storage modulus was significantly enhanced below the glass transition temperature (Tg), and Tg shifted to a higher temperature, with a maximum at a surfactant loading of 0.6 CEC. The mechanical properties, including tensile strength, flexural strength, flexural modulus and impact strength, increased and then decreased with surfactant loading, with the maximum observed also at a surfactant loading of 0.6 CEC. In conclusion, an ideal balance between thermal and mechanical properties can be obtained at a surfactant quantity equivalent to 0.6 times the clay CEC. Moreover, all the composites exhibited obvious improvement in thermal and mechanical properties as compared to those of neat PBS.  相似文献   

6.
Polylactide (PLA)/poly(ethylene-co-octene) (POE) blends containing ethylene-glycidyl methacrylate copolymer (EGMA) as a compatibilizer were prepared by melt blending. An immiscible, two-phase structure with POE dispersed in the PLA matrix was observed by scanning electron microscopy. It was found that the POE particle size was significantly decreased by the addition of EGMA, and the POE particle size and distribution decreased with the increase of the compatibilizer content up to 2% EGMA, beyond which the POE particle size and distribution remained unchanged. The reactions between the epoxy groups of EGMA and carboxylic or hydroxyl groups of PLA were elucidated by the Fourier transform infrared spectroscopy. Rheological results showed that the G′(ω), G″(ω), and complex viscosity of PLA/POE blends significantly increased at low frequencies with the addition of EGMA. The failure mode changed from brittle fracture of the neat PLA to ductile fracture of the PLA/POE blends.  相似文献   

7.
Polypropylene/organo-vermiculite (OVMT) nanocomposites with different clay loadings were prepared via melt-mixing using a twin-screw extruder. The vermiculite was premodified with maleic anhydride by ball milling. The resultant polypropylene/OVMT nanocomposites possess an intercalated structure as confirmed by both wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The mechanical property tests show that the tensile and flexural strength of these nanocomposites increase dramatically with the OVMT loading; the fracture toughness remains almost unchanged and the Charpy impact strength decreases slightly. Finally, differential scanning calorimetry (DSC) and WAXD results show that the addition of vermiculite can induce the β crystal structure of polypropylene.  相似文献   

8.
Epoxidized natural rubber (ENR50) and two different kinds of organoclay (C30B and C15A) were used in blends of styrene-butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) and their effects upon interaction between phases, morphology, and mechanical properties of the blends were investigated. The compounds were characterized by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The obtained results showed formation of hydrogen bonding between the compounds ingredients due to incorporation of C30B, especially in presence of ENR. AFM and FE-SEM analysis revealed good dispersion of the nanoparticles in the polymer matrix upon addition of ENR as well as better dispersion of C30B than C15A in the NBR phase. XRD results showed a greater expansion of the silicate layers by simultaneous use of organoclay and ENR Incorporation of organoclay alone or in combination with ENR in the blends caused shifting of the SBR Tg toward the NBR Tg. The tensile properties of the blends showed improvement by using nanoparticles in the presence of ENR.  相似文献   

9.
Isolated single crystals of isotactic polypropylene (iPP) grown from the melt were studied by optical microscopy and atomic force microscopy (AFM). The single crystals had a well-known rectangular shape when crystallized at high temperatures (Tc) above 155°C. The width increased with decreasing Tc, and the shape became hexagonal below 130°C. The single crystals were sectored with thickness difference between them. The growth rate along the a*-axis, Ga*, agreed well with the growth rate of spherulites, as expected. Ga* had two inflection points on the plots against (TΔT)?1. The lower temperature inflection corresponds to the regime II-III transition, and the higher temperature one is accompanied by an inflection of the growth rate in the b-axis direction, Gb, which has been measured for the first time. The inflection of Gb at the lower inflection temperature of Ga* was much smaller than that of Ga* and may not exist. The crystals are basically surrounded with flat surfaces and no indications of kinetic roughening in the regime III were recognized in the AFM images. The inflections of Ga* and Gb caused a complicated shape change of the aspect ratio, having a minimum at around 135°C.  相似文献   

10.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

11.
The effects of carbon nanotubes (CNTs) on the morphology of uncompatibilized and maleic anhydride-grafted polypropylene (MAPP)-compatibilized polyamide 6 (PA6)/polypropylene (PP) (70/30 w/w) blends prepared using a torque rheometer were investigated. TEM observations showed that the CNTs were selectively located in the major PA6 phase and at the interface. Such localization of nanofillers in the literature usually leads to a refinement in a sea-island morphology. Unexpectedly, our results show that increasing amounts of CNTs in the samples prepared using a torque rheometer led to a transformation from typical sea-island morphology to co-continuous morphology for uncompatibilized PA6/PP blends and to partial fibrillization of the PP domains for MAPP-compatibilized PA6/PP blends. These unusual morphological changes are attributed to a retarded morphology evolution process caused by the CNTs. According to rheological measurements and theoretical analysis, this was achieved through the role of CNTs in enhancing the viscoelasticity of the PA6 phase and promoting interfacial slip. The electrical resistivites, crystallization, and melting behavior of all samples were also studied.  相似文献   

12.
In this work, a polypropylene (PP)/attapulgite nanocomposite was prepared via melt blending using a novel organically modified attapulgite (OATP). The thermal stability of PP/clay nanocomposites compared to pure PP was examined in nitrogen using a kinetic analysis. The kinetic parameters, including reaction order and activation energy (A and E a) of the degradation process were determined by applying the Flynn‐Wall‐Ozawa method using derivative thermogravimetric (DTG) curves. At the same time, the effect of organic attapulgite on thermal decomposition of polypropylene matrix was analyzed. As a result, PP/OATP nanocomposites have slightly higher degradation temperature than that of the pure PP. The values of the reaction order of PP and PP/OATP nanocomposites are close to 1 in the nonisothermal degradation process. The activation energies of PP/OATP nanocomposites also increase slightly compared to the pure PP, thus it is suggested that the org‐attapulgite has little effect on the thermal stability of the pure PP.  相似文献   

13.
Polyamide 6(PA 6)/Polypropylene (PP) blends as well as PA 6/PP/clay composites were prepared by melt compounding. The distribution of clay was characterized by transmission electron microscopy. The combustion surface morphology as well as product composition after burning were studied by scanning electron microscopy along with electro-probe microanalysis. Moreover, the flame retardance and thermal stability were evaluated by a cone calorimeter together with thermogravimetric analysis. The results showed that the clay was selectively located in the PA6 phase. It is proposed that, in the presence of clay, the combustion surface changed from a branch-shaped structure to a compact carbonaceous–silicate structure. When the clay content was 3 phr, the layered silicates became enriched on part of the surface and formed an island-like structure; the islands displayed a loose cinders structure with much higher silicon content, in contrast to a branch-shaped surface with low silicon content of the surrounding polymer substrate. As the clay content continued to increase, the char covered most of the combustion surface and more clay accumulated on the burning surface. In addition, the clay particles promoted the formation of the carbonaceous–silicate structure. The peak of the heat release rate of the PA6/PP blend decreased with increasing addition of clay and the thermal stability of the PA6/PP blend also improved.  相似文献   

14.
Polypropylene/multiwalled carbon nanotubes (PP/MWNTs) nanocomposites were prepared by a melt compounding process. The morphology and nonisothermal crystallization of these nanocomposites were investigated by means of optical microscopy, scanning electron microscopy, and differential scanning calorimetry. Scanning electron microscope micrographs of PP/MWNTs composite showed that the MWNTs were well dispersed in the PP matrix and displayed a clear nucleating effect on PP crystallization. Avrami theory, modified by Jeziorny and Mo's method, was used to analyze the kinetics of the nonisothermal crystallization process. It was found that the addition of MWNTs improved the crystallization rate and increased the peak crystallization temperature of the PP/MWNTs nanocomposites as compared with PP. The results show that the Jeziorny theory and Mo's method successfully describe the nonisothermal crystallization process of PP and PP/MWNTs nanocomposites.  相似文献   

15.
The rheology and morphology of multi-walled carbon nanotube (MWNT)/polypropylene (PP) nanocomposites prepared via melt blending was investigated. The minor phase content of MWNT varied between 0.25 and 8 wt%. From morphological studies using a scanning electron microscopy technique a good dispersion of carbon nanotubes in the PP matrix was observed. The rheological studies were performed by a capillary rheometer, and mechanical properties of the nanocomposites were studied using a tensile and flexural tester. Both PP and its nanocomposites showed non-Newtonian behavior. At low shear rates the addition of MWNT content causes an increase in viscosity; however, viscosity is less sensitive to addition of MWNT content at higher shear rates. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. From this calculation it was concluded that the temperature sensitivity of nanocomposites was increased by increasing of nanotube content. An increase in tensile and flexural moduli and Izod impact strength was also observed by increasing the MWNT content. From rheological and mechanical tests it was concluded that the mechanical and rheological percolation threshold is at 1.5 wt%.  相似文献   

16.
采用傅里叶远红外光谱仪(FTIR),在室温条件下测量了多种饱和直链有机小分子的太赫兹光谱。测试结果显示,有机官能团的差异导致有机物的太赫兹光谱特征显著不同。其中,有机物的晶格振动吸收峰和分子间氢键的振动吸收峰分别位于太赫兹高频和低频波段。而且,饱和直链一元醇的—OH官能团产生的分子间氢键的特征峰位于57 cm-1,而三十烷酸的—COOH官能团产生的分子间氢键的特征峰则位于74 cm-1。分子间氢键使三十烷醇和三十烷酸对太赫兹辐射的吸收能力明显地强于三十烷烃。相比于三十烷醇,三十烷酸的太赫兹特征峰还发生有规律的红移和蓝移现象。此外,还采用密度泛函理论B3LYP/6-311G(d, p)基组对饱和直链烷烃、烷醇和烷酸的太赫兹光谱进行了仿真计算,发现分子间氢键作用越强的有机物的单体分子的仿真结果与实测光谱的吻合程度越低。二聚体结构的仿真结果与实测光谱的吻合程度明显地高于单分子结构。研究结果对利用FTIR研究其他有机官能团的太赫兹光谱特征、探索有机分子内部的振动模式、探究有机物太赫兹响应的物理原理及器件应用等具有重要意义。  相似文献   

17.
Attapulgite (AT) was modified by grafting with butyl acrylate (BA) via polymerizations initiated by Gamma radiation. Polypropylene (PP)/AT nanocomposites were synthesized via melt extrusion in a twin-screw extruder. Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TG) were used to assess the structure of the hybrid materials and the dispersion of AT was verified by transmission electron microscopy (TEM). The crystallization kinetics of PP/AT nanocomposites were investigated by differential scanning calorimetry (DSC) and analyzed by using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PP. Step-scan differential scanning calorimetry (SDSC) was used to study the influence of AT on the crystallization and subsequent melting behavior. The results revealed that PP and PP/AT nanocomposites experienced multiple melting and secondary crystallization processes during heating. The melting behaviors of PP and PP/AT nanocomposites varied with the variation of crystallization temperature and AT content.  相似文献   

18.
The effectiveness of maleic anhydride grafted ethylene propylene diene monomer rubber (EPDM-g-MAH) as an interfacial compatibilizer in enhancing the extent of interaction between natural rubber (NR) matrix and organoclay (OC) nanolayers, and also the eventually developed microstructure during a melt mixing process, has been evaluated as an alternative material to be used in place of commonly used epoxidized NR with 50 mol % epoxidation (ENR50). The latter usually weakens the processability of the final compound. The curing behavior, rheological, and dynamic mechanical properties of the prepared nanocomposites have been evaluated. Microstructural characterizations revealed better interfacial compatibilization by EPDM-g-MAH than ENR50, which is attributed to the lower polarity of the EPDM-g-MAH and hence more affinity for the NR matrix to be diffused onto the galleries of OC. This was confirmed with transmission electron microscopy (TEM) examination and higher elasticity exhibited by the unvulcanized NR/OC/EPDM-g-MAH nanocomposites in melt rheological measurements. Also, lower damping behavior was observed for the vulcanized NR/OC/EPDM-g-MAH samples. These imply intensified polymer–filler interfacial interaction and hence restricted viscous motions by the NR segments. Vulcanized NR/OC nanocomposites compatibilized with EPDM-g-MAH showed greater enhancements in tensile properties than the sample compatibilized with ENR50.  相似文献   

19.
Blends of polycarbonate (PC) and acrylonitrile–EPDM (ethylene/propylene/diene elastomer)–styrene terpolymer (AES) were prepared at 20%, 30%, 40%, 50%, and 80% by weight of AES. The rheological properties and morphology of the PC, AES, and their blends were studied systematically. The strain sweep results show that the linear viscoelastic region of the AES is far less than that of PC. With the addition of AES, the linear viscoelastic regions become shorter gradually. The dynamic frequency sweep measurements indicate that the dependences of the complex viscosity on frequency for PC and AES are very different. With the increase of AES content, the complex viscosities of blends exhibit a more significant shear thinning behavior. All the samples, except PC, display a distinct nonterminal behavior at low frequencies. The level of the plateau depends on the volume fraction of the rubber phase. PC, AES, and PC/AES blends obey the Cox–Merz rule generally. The blends, which have similar morphology, show similar rheological properties.  相似文献   

20.
The in situ polypropylene (PP)/polystyrene (PS) alloy was prepared in the presence of dicumyl peroxide (DCP). Purified styrene (St) and pre‐polymerized styrene (PSt), forming a dispersed PS phase in the PP matrix would react with PP matrix to form PP‐g‐PS graft co‐polymers acting as a compatibilizer in these alloys, leading to the formation of in situ PP/PS alloys with in situ compatibilizer during reactive blending in a mixer. The morphology development of the alloy was examined by scanning electron microscopy (SEM) and was described using the characteristic length L and the average characteristic length Lm. The shape of the dispersed PS phase was regular and the distribution of PS particles was uniform. Tensile properties of the alloy were improved with mixing time and fluctuated in a certain composition range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号