首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Thermoelectric (TE) performances are systematically investigated for the pellets of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with different organic additives and heating process as organic TE materials. The electrical conductivity, Seebeck coefficient and thermal conductivity versus temperature are determined, respectively. It is found that there is no distinct change for the Seebeck coefficient among each sample with the additions of dimethyl sulfoxide and ethylene glycol. The thermal conductivity measured in a wide range of temperature indicates that the PEDOT:PSS pellet have an extremely low value. The highest figure of merit (ZT= 1.75×10-3) is observed at 270K among the PEDOT:PSS pellets.  相似文献   

2.
王学进  郭正飞  曲婧毓  潘坤  祁铮  李泓 《中国物理 B》2016,25(2):28201-028201
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) is usually sandwiched between indium tin oxide(ITO) and a functional polymer in order to improve the performance of the device. However, because of the strong acidic nature of PEDOT:PSS, the instability of the ITO/PEDOT:PSS interface is also observed. The mechanism of degradation of the device remains is unclear and needs to be further studied. In this article, we investigate the in-situ electrochromism of PEDOT:PSS to disclose the cause of the degradation. X-ray photoelectron spectroscopy(XPS) was used to characterize the PEDOT:PSS films, as well as the PEDOT:PSS plus polyethylene glycol(PEG) films with and without indium ions. The electrochromic devices(ECD) based on PEDOT:PSS and PEG with and without indium ions are carried out by in-situ micro-Raman and laser reflective measurement(LRM). For comparison, ECD based on PEDOT:PSS and PEG films with LiCl, KCl, NaCl or InCl_3 are also investigated by LRM. The results show that PEDOT:PSS is further reduced when negatively biased, and oxidized when positively biased. This could identify that PEDOT:PSS with indium ions from PEDOT:PSS etching ITO will lose dopants when negatively biased. The LRM shows that the device with indium ions has a stronger effect on the reduction property of PEDOT:PSS-PEG film than the device without indium ions. The contrast of the former device is 44%, that of the latter device is about 3%. The LRM also shows that the contrasts of the device based on PEDOT:PSS+PEG with LiCl, KCl, NaCl, InCl_3 are 30%, 27%, 15%, and 18%, respectively.  相似文献   

3.
Firstly, tellurium (Te) nanorods with a high Seebeck coefficient have been integrated into a conducting polymer PEDOT/PSS to form PEDOT/PSS/Te composite films. The Seebeck coefficient of the PEDOT/PSS/Te (90 wt.%) composite films is ~191 μV/K, which is about 13 times greater than that of pristine PEDOT/PSS. Then, H2SO4 treatment has been used to further tune the thermoelectric properties of the composite films by adjusting the doping level and increasing the carrier concentration. After the acid treatment, the electrical conductivity of the composite films has increased from 0.22 to 1613 S/cm due to the removal of insulating PSS and the structural rearrangement of PEDOT. An optimized power factor of 42.1 μW/mK2 has been obtained at room temperature for a PEDOT/PSS/Te (80 wt.%) sample, which is about ten times larger than that of the untreated PEDOT/PSS/Te composite film.  相似文献   

4.
通过拉曼光谱方法分别对PEDOT:PSS掺杂和去掺杂状态进行了详细分析. 实验结果表明, 去掺杂的PEDOT:PSS由于其在激发波长附近的吸收增强而引起了共振效应, 拉曼信号得到大幅度增强, 可见, 以633 nm(He-Ne)激光为激发波长的拉曼光谱是研究PEDOT:PSS掺杂状态的有效方法. 此外, 显微拉曼光谱也是分析聚合物发光二极管器件内各层材料的有效手段.  相似文献   

5.
Polymeric negative differential resistive (NDR) switching was explored based on the sandwiched structure of indium titanium oxide (ITO) coated polyethyleneterepthalate(PET)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)/silver(Ag) through electrohydrodynamic atomization (EHDA) printing technique. The NDR switching in the fabricated device with the structure of ITO/PEDOT:PSS/Ag was analyzed through semiconductor device analyzer under polarity dependent bipolar sweeping voltage of less than ± 5 V ${\pm} 5~\mathrm{ V}$ . Effect of the current compliance (CC) in the NDR switching of the fabricated switch has been demonstrated. Multiple resistive switching sweeps were taken to scrutinize the robustness of the fabricated device over 100 cycles. The non-volatility of the as-fabricated device was checked against different time stresses over 2500 s. The switching mechanism is proposed to be due to the transition between PEDOT+ and PEDOT0 chains. The current conduction mechanism involved in the PEDOT:PSS based NDR switches is attributed to the ohmic conduction at lower voltages, while space charge limited conduction and NDR effects were prominent due to the injection of carriers at higher voltages.  相似文献   

6.
An efficient cathode material with high transparency (93%) based on conducting polymer poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and single wall carbon nanotubes (SWCNTs) has been developed for the fabrication of highly transparent and flexible field electron emitters (FEE). This kind of material showed superior field emission (FE) performance with very high current density (10–3A/cm2) at very low electric field. The FE performance of the hybrid materials was dramatically improved compared to either SWCNTs and PEDOT:PSS. Thus the hybrid structures of conducting polymer and SWCNTs might be a good choice for use as a cathode material to enhance the FE performance and for potential application in future portable displays. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
郝志红  胡子阳  张建军  郝秋艳  赵颖 《物理学报》2011,60(11):117106-117106
研究了掺杂后poly(3,4-ethylene dioxythiophene):poly(styrenesulphonic acid)(PEDOT ∶PSS)电导率的变化以及掺杂PEDOT ∶PSS薄膜对聚合物太阳能电池器件性能的影响. 实验发现,向PEDOT ∶PSS中掺入极性溶剂二甲基亚砜(DMSO)明显提高了薄膜的电导率,掺杂后的电导率最大值达到1.25 S/cm,比未掺杂时提高了3个数量级. 将掺杂的PEDOT ∶PSS薄膜作为缓冲层应用于聚合物电池 (ITO/PEDOT ∶PSS/P3HT ∶PCBM/LiF/Al) 中,发现高电导率的PEDOT ∶PSS降低了器件的串联电阻,增加了器件的短路电流,从而提高了器件的性能. 最好的聚合物太阳能电池在100 mW/cm2的光照下,开路电压(Voc)为0.63 V,短路电流密度(Jsc)为11.09 mA·cm-2,填充因子(FF)为63.7%,能量转换效率(η)达到4.45%. 关键词: PEDOT ∶PSS 电导率 聚合物太阳能电池 能量转换效率  相似文献   

8.
Organic photovoltaic cells have important advantages, such as low cost and mechanical flexibility. The conducting polymer poly(3,4 ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely used as an interfacial layer or a polymer electrode in polymer electronic devices, such as photovoltaic devices and light-emitting diodes. In this report, we discuss the direct current (DC) conductivity of PEDOT:PSS films containing various weight ratios of sorbitol dopant. The work function is shown to steadily decrease with increasing dopant content. With different dopant contents, illuminated current–voltage photovoltaic characteristics were observed. Ultraviolet photoelectron spectroscopy (UPS) analysis revealed that the work function of the PEDOT:PSS was affected by its sorbitol content. The morphologies of the doped PEDOT:PSS films were characterized by atomic force microscopy (AFM). For the device fabrication, we made organic photovoltaic cells by a spin-coating process and Al deposition by thermal evaporation. The sorbitol dopant is able to improve the efficiency of the device.  相似文献   

9.
In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate))(PEDOT:PSS) and its influence on the performance of perovskite solar cells.. The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide(ITO)/PEDOT:PSS/CH_3NH_3PbI_3/PC_(61)BM/Al, where PEDOT:PSS and PC_(61)BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency(PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G(100 mW/cm~2 illumination) after the buffer layer has been modified.  相似文献   

10.
Thin films of the conducting polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) were deposited by resonant infrared laser vapor deposition (RIR-LVD). The PEDOT:PSS was frozen in various matrix solutions and deposited using a tunable, mid-infrared free-electron laser (FEL). The films so produced exhibited morphologies and conductivities that were highly dependent on the solvent matrix and laser irradiation wavelength used. When deposited from a native solution (1.3% by weight in water), as in matrix-assisted pulsed laser evaporation (MAPLE), films were rough and electrically insulating. When the matrix included other organic “co-matrices” that were doped into the solution prior to freezing, however, the resulting films were smooth and exhibited good electrical conductivity (0.2 S/cm), but only when irradiated at certain wavelengths. These results highlight the importance of the matrix/solute and matrix/laser interactions in the ablation process.  相似文献   

11.
An increase of work function (0.3 eV) is achieved by irradiating poly(3,4-ethylenedioxythiophene):poly(styrene sul- fonate) (PEDOT:PSS) film in vacuum with 254-nm ultraviolet (UV) light. The mechanism for such an improvement is investigated by photoelectron yield spectroscopy, X-ray photo electron energy spectrum, and field emission technique. Sur- face oxidation and composition change are found as the reasons for work function increase. The UV-treated PEDOT:PSS film is used as the hole injection layer in a hole-only device. Hole injection is improved by UV-treated PEDOT:PSS film without baring the enlargement of film resistance. Our result demonstrates that UV treatment is more suitable for modifying the injection barrier than UV ozone exposure.  相似文献   

12.
采用喷涂技术制备聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)有机层薄膜,系统研究了乙醇、去离子水、甲醇、异丙醇和乙二醇等稀释溶剂对PEDOT:PSS薄膜形貌、透过率及导电性能的影响。将PEDOT:PSS薄膜应用于有机太阳能电池器件的制备,研究了不同溶剂对器件性能的影响。实验结果表明:采用乙醇稀释PEDOT:PSS溶液,能有效抑制PEDOT:PSS颗粒团聚,降低薄膜粗糙度,提高薄膜的透过率和导电性。以其制备的太阳能电池器件的能量转换效率明显高于其他溶剂稀释,转换效率为2.66%。  相似文献   

13.
ABSTRACT

The analysis of plastics and fibers is of importance to forensic scientists, especially in the investigation of trace evidence. In this study, we use Fourier transform infrared microscope and confocal Raman spectroscope to investigate two kinds of polymers: poly(butylenes adipate-co-terephthalate) and poly(ethylene terephthalate), which are very similar in structure and cannot be discriminated easily with other instruments. Infrared and Raman spectra were tentatively interpreted. The indicative peaks (937 cm?1, 1121 cm?1 in Infrared spectra; 996 cm?1, 1396 cm?1 in Raman spectra) to distinguish the two polymers were also summarized. The data in this study can help forensic scientists identify these two polymers accurately and avoid wrong certificate of authenticity. The data also offer the producer and researchers an effective and fast method to characterize and identify the poly(butylenes adipate-co-terephthalate).  相似文献   

14.
In this work, we investigated for the first time the characteristics of (poly (3-hexylthiopene) and [6, 6]-phenyl C61-butyric acid methyl ester) (P3HT:PCBM) blends-based organic solar cell with 1.25?mg/mL boric-acid (H3BO3)-doped poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer which is irradiated under the 40 Gray (Gy) dose of gamma (γ) ray. Experimental results showed that the parameters of solar cell improved with exposure to low-dose gamma radiation. In particular, it has provided a significant improvement in short-circuit current density (Jsc) and power conversion efficiency (PCE). About 49% increase in PCE to 1.22% and 40% increase in Jsc to 6.28?mA/cm2 was obtained between the bare device and the device containing irradiated PEDOT:PSS:H3BO3. Also, it was determined that the H3BO3-doped PEDOT:PSS is more stable to temperature. More importantly, solar cell containing gamma-irradiated PEDOT:PSS:H3BO3 showed best performance comparing to conventional PEDOT:PSS-based cell.  相似文献   

15.
杨家霁  李雪晶  贾艳华  张弜  蒋庆林 《中国物理 B》2022,31(2):27302-027302
Thermoelectric(TE)energy harvesting can effectively convert waste heat into electricity,which is a crucial technology to solve energy concerns.As a promising candidate for energy conversion,poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)has gained significant attention owing to its easy doping,high transparency,and solution processability.However,the TE performance of PEDOT:PSS still needs to be further enhanced.Herein,different approaches have been applied for tuning the TE properties:(i)direct dipping PEDOT:PSS thin films in ionic liquid;(ii)post-treatment of the films with concentrated sulfuric acid(H2SO4),and then dipping in ionic liquid.Besides,the same bis(trifluoromethanesulfonyl)amide(TFSI)anion and different cation salts,including 1-ethyl-3-methylimidazolium(EMIM+)and lithium(Li+),are selected to study the influence of varying cation types on the TE properties of PEDOT:PSS.The Seebeck coefficient and electrical conductivity of the PEDOT:PSS film treated with H2SO4EMIM:TFSI increase simultaneously,and the resulting maximum power factor is 46.7μW·m-1·K-2,which may be attributed to the ionic liquid facilitating the rearrangement of the molecular chain of PEDOT.The work provides a reference for the development of organic films with high TE properties.  相似文献   

16.
Gel polymer electrolyte based on poly(vinyl acetate) and poly(vinylidene fluoride) was prepared by solvent casting technique, in which the addition of plasticizers improves the conductivity of polymer membranes. The blend polymer electrolyte containing propylene carbonate (PC) exhibits the highest conductivity of 0.922?×?10?2 S cm?1 at room temperature because of the higher dielectric constant as compared to other plasticizers used in the present study. Material characterizations were done with the help of SEM and FT-IR techniques. The activation energy values were computed from ‘log σ?1/T’ Arrhenius plots.  相似文献   

17.
Poly(ethylene glycol)/poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PEG/PAMPS) with a transparent appearance were prepared in the presence of ammonium persulfate (APS) as an initiator at 70 °C for 24 h. PEG/PAMPS-based polymer gel electrolytes in a motionless and uniform state were obtained by adding the required amount of liquid electrolytes to a dry PEG/PAMPS polymer. Liquid electrolytes include organic solvents with high boiling points (-1-methyl-2-pyrrolidone (NMP) and γ-butyrolactone (GBL)) and a redox couple (alkali metal iodide salt/iodine). The optimized conditions for PEG/PAMPS-based gel electrolytes based on the salt type, the concentration of alkali metal iodide salt/iodine, and solvent volume ratio were determined to be NaI, 0.4 M NaI/0.04 M I2, and NMP:GBL (7:3, v/v), respectively. The highest ionic conductivity and the liquid electrolyte absorbency were 2.58 mS cm?1 and 3.6 g g?1 at 25 °C, respectively. The ion transport mechanism in both the polymer gel electrolytes and liquid electrolytes is investigated extensively, and their best fits with respect to the temperature dependence of the ionic conductivity are determined with the Arrhenius equation.  相似文献   

18.
Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was modified by different concentrations of multi-wall carbon nanotubes (MWNTs), and the nanocomposites of PEDOT:PSS and MWNTs were firstly used as hole-injection layer in fabrication of organic light-emitting devices (OLEDs) by using a double-layer structure with hole-injection layer of doped PEDOT:PSS and emitting/electron transport layer of tris(8-hydroxyquinolinato) aluminum (Alq3). PEDOT:PSS solution doped with MWNTs was spin-coated on clean polyethylene terephthalate (PET) substrate with indium tin oxide (ITO). It was found that the electroluminescence (EL) intensity of the OLEDs were greatly improved by using PEDOT:PSS doped with MWNTs as hole-injection layer which might have resulted from the hole-injection ability improvement of the nanocomposites. Higher luminescence intensity and lower turn-on voltage were obtained by these devices and the luminance intensity obtained from the device with the hole-injection layer of PEDOT:PSS doped by 0.4 wt.% MWNTs was almost threefolds of that without doping.  相似文献   

19.
石墨烯具有独特的电学性能、优异的机械延展性和良好的化学稳定性,是制备高性能导电薄膜的理想材料,但是当前石墨烯的高电阻率限制了它的实际应用。本文采用喷涂方法制备了石墨烯/聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)复合导电薄膜,对复合薄膜的表面形貌与光电性能进行了研究。PEDOT:PSS的引入不仅降低了石墨烯薄膜的表面电阻,同时还平滑了薄膜表面。在此基础上,成功制备了柔性黄光有机电致发光器件,器件在12 V时达到效率最大值0.9 cd/A。器件在曲率半径为10 mm时弯曲了100次后,发光亮度并无明显变化。该复合薄膜可实际应用于柔性有机电致发光显示器件。  相似文献   

20.
Nano-sized silica poly(methylmethacrylate)-based gel electrolyte containing lithium hexafluorophosphate (LiPF6) was synthesized by using different binary solvent mixture (propylene carbonate(PC) and dimethylformamide (DMF) in different volume ratio). Role of DMF in PC: Higher DMF content in PC-based electrolyte shows higher ionic conductivity at all polymer content and at wide temperature regions (10-70 °C). A small increment in ionic conductivity at lower content of polymer in liquid/gel electrolyte was observed and having maximum conductivity of 13.12 mS/cm at 25 °C. Stability (mechanically and electrically), viscosity and ionic conductivity of gel electrolytes were improved with the addition of nano-sized silica at ambient temperature. Ionic conductivity of nano-sized silica-based gel electrolyte does not change much over 5o–70 °C temperature range and is factor-wise only which make indispensable in different electrochemical devices. Also polymer gel electrolyte membranes as such and with dispersed silica nano-particles were characterized through scanning electron microscope to study the morphology of gel matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号