首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
High aspect ratio multi-walled carbon nanotubes (MWCNTs) reinforced low density polyethylene (LDPE) composites were prepared by solvent casting followed by compression molding technique. Electromagnetic interference (EMI) shielding effectiveness (SE) of these composites was investigated in the frequency range of 12.4?C18 GHz (Ku-band) for the first time. The experimental results indicate that the EMI-SE of these composites is sensitive to the MWCNT loading. The average value of EMI-SE reaches 22.4 dB for 10 wt% MWCNT-LDPE composites, indicating the usefulness of this material for EMI shielding in the Ku-band. The main reason for improved SE has been attributed to significant improvement in the electrical conductivity of the composites by 20 orders of magnitude, i.e., from 10?20 for pure LDPE to 0.63 S/cm for MWCNT-LDPE, which is three order of magnitude higher than the previous reports for MWCNT-LDPE composites. Differential scanning calorimetry of the MWCNT-LDPE composites showed around 37% improvement in the crystalline contents over pure LDPE samples which resulted into enhanced thermal stability of the composites. The thermal decomposition temperature of LDPE is shifted by 40 °C on addition of 5 wt% MWCNT. The studies therefore show that these composite can be used as light weight, thermally stable EMI shielding, and antistatic material.  相似文献   

2.
An efficient approach was employed to simultaneously functionalize and reduce the graphene oxide (GO) with p-phenylene diamine (PPD) using simple refluxing. There was a possibility of nucleophilic substitution of amino moieties of PPD with the epoxy groups of GO. The polythiophene (PTh) and polythiophene-co-poly(methylmethacrylate) (PTh-co-PMMA) nanocomposites with chemically modified GO were prepared using in situ polymerization technique. Two series of nanocomposites that is PTh/PPD-GO and PTh-co-PMMA/PPD-GO were designed. The nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), thermal conductivity, and electrical conductivity measurement. The FTIR spectra depicted the characteristic absorption peaks for the formation of copolymer and their composites with PPD-GO. The SEM micrographs showed that the PPD-GO nanosheets were homogeneously dispersed in copolymer matrix forming nano-granular morphology. The nanofluids were prepared by suspending modified GO particles inside the basefluid of polythiophene and PTh-co-PMMA. The thermal conductivity of nanocomposites was significantly improved even with low PPD-GO loading. The thermal conductivity of PTh-co-PMMA/PPD-GO with 1.5 wt.% filler was increased to 1.42 W/mK at a higher temperature. The XRD patterns confirmed the presence of chemical interactions between the copolymer and filler particles. The electrical conductivity of PTh-co-PMMA/PPD-GO was also found to increase in the range of 6.1 × 10?3–2.5 × 10?2 S/cm. Novel PTh-co-PMMA/PPD-GO-based nanocomposite is potentially significant in high-performance thermal systems.  相似文献   

3.
Thermo-electrical characterizations of hybrid polymer composites, made of epoxy matrix filled with various zinc oxide (ZnO) concentrations (0, 4.9, 9.9, 14.9, and 19.9 wt%), and reinforced with conductive carbon black (CB) nanoparticles (0.1 wt%), have been investigated as a function of ZnO concentration and temperature. Both the measured DC-electrical and thermal conductivities showed ZnO concentration and temperature dependencies. Increasing the temperature and filler concentrations were reflected in a negative temperature coefficient of resistivity and enhancement of the electrical conductivity as well. The observed increase in the DC conductivity and decrease in the determined activation energy were explained based on the concept of existing paths and connections between the ZnO particles and the conductive CB nanoparticles. Alteration of ZnO concentration with a fixed content of CB nanoparticles and/or temperature was found to be crucial in the thermal conductivity behavior. The addition of CB nanoparticles to the epoxy/ZnO matrix was found to enhance the electrical conduction resulting from the electronic and impurity contributions. Also, the thermal conductivity enhancement was mostly attributed to the heat transferred by phonons and electrons hopping to higher energy levels throughout the thermal processes. Scanning electron microscopy and energy-dispersive spectroscopy were used to observe the morphology and elements’ distribution in the composites. The observed thermal conductivity behavior was found to correlate well with that of the DC-electrical conductivity as a function of the ZnO content. The overall enhancements in both the measured DC- and thermal conductivities of the prepared hybrid composites are mainly produced through mutual interactions between the filling conductive particles and also from electrons tunneling in the composite's bulk as well.  相似文献   

4.
The primary goal of this study is to develop a novel PEMs with unique surface structure utilizing the high viscosity of the impregnation solution. SiO2 nanofiber mats were prepared via the electrospinning method and introduced into sulfonated poly(ether sulfone) (SPES) matrix to prepare hybrid membrane. The effect of concentration of impregnation solution on the morphology and properties of the proton exchange membranes (PEMs), including thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeability were investigated. SEM results showed that a unique surface structure was prepared due to the high solution concentration. Moreover, the hydrophilic nanofibers on the surface constructed continuous proton pathways, which can enhance the proton conductivity of the membranes, a maximum proton conductivity of 0.125 S/cm was obtained when the SPES concentration was 40 wt% at 80 °C, and the conductivity was improved about 1.95 times compared to that of pure SPES membrane. The SiO2 nanofiber mat-supported hybrid membrane could be used as PEMs for fuel cell applications.  相似文献   

5.
A novel flame retardant (NSiB) containing nitrogen, silicon and boron was synthesized through reacting of N-(β-aminoethyl)-γ-aminopropyl trimethoxy-silane (KH-792) and boric acid. The structure of NSiB was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS). The effects of NSiB on the flame retardancy and thermal behaviors of polypropylene (PP)/polyethylene vinyl acetate (EVA) blends were investigated by limiting oxygen index value (LOI), vertical burning tests (UL-94) and thermal gravimetric analysis tests (TGA). The results showed that the flame retardancy and thermal stability of PP/EVA blends were improved with the addition of NSiB. When 7.5 wt% DOPO (phosphaphenanthrene) and 0.5 wt% NSiB were incorporated, the LOI value of the PP/EVA blends was 26.9%, and the class V-0 of UL-94 test was passed, as compared to the LOI value of 22.4% and class V-2 of UL-94 test for 8.0 wt% DOPO only and 16.7% and fail, respectively, for the PP/EVA blends alone. The char structure observed by SEM indicated that the surface of the char for the PP/EVA/7.5 wt% DOPO/0.5 wt% NSiB blends had a denser and continuous char structure when compared with that of the PP/EVA blends and PP/EVA/8.0 wt% DOPO blends. These results indicated that there was a good synergistic effect for NSiB and DOPO.  相似文献   

6.
Nano-composite polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), ammonium tetrafluoroborate (NH4BF4), and nano-size fumed silica (SiO2) have been prepared and characterized by complex impedance spectroscopy. Ionic conductivity of polymer has been found to increase with the addition of NH4BF4, and a maximum conductivity of 3.62 × 10?6 S/cm has been obtained at 30 wt% NH4BF4. The formation of ion aggregates at high concentration of salt has been explained by Bjerrum’s law and mass action considerations. The conductivity of polymer electrolytes has been increased by three orders of magnitude (10?6 to 10?3 S/cm) with the addition of plasticizer, and a maximum conductivity of 1.10 × 10?3 S/cm has been observed at 80 wt% DMA. An increase in conductivity with the addition of nano-size fumed silica is attributed due to the formation of space-charge layers. A maximum conductivity of 7.20 × 10?3 S/cm has been observed for plasticized nano-composite polymer electrolytes at 3 wt% SiO2. X-ray diffraction analysis of polymer electrolyte system was also carried out. A small change in conductivity of nano-composite polymer electrolytes observed over the 30–130 °C temperature range and for a period of 30 days is also desirable for their use in various applications.  相似文献   

7.
Abstract

Poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends were prepared by melt blending and rapid quenching in ice water. The miscibility and thermal properties were investigated using differential scanning calorimeter (DSC) and dynamic mechanical analysis (DMA). The blend's morphologies were investigated using scanning and transmission electron microscopies. Both DSC and DMA results suggested that PTT and PC were very limited, partially miscible pairs. The melting point, melt crystallization, and cold crystallization exotherms in the blends of PTT were depressed by the presence and amount of PC. When the PC content was <50 wt%, PC spherical particles were found to distribute evenly in the PTT matrix; at 50–60 wt%, the two‐phase structures were close to being bicontinuous. At higher PC content, PTT formed a string‐like texture in the PC matrix. The PTT spherulitic morphologies in PTT/PC blends were found to be very sensitive to PC and PC content. When the PC content was ≥60 wt%, the blends crystallized as an agglomeration of tiny PTT crystals.  相似文献   

8.
Suwen Wang  Lei Jin  Zhongfang Li 《Ionics》2013,19(7):1027-1036
Polymer composite membranes based on sulfonated poly(phthalazinone ether sulfone) (SPPES) and zirconium sulfophenyl phosphate (ZrSPP) were prepared. Three ZrSPP concentrations were used: 10, 20, and 30 wt%. The membranes were characterized by infrared spectroscopy (IR), X-ray diffraction spectroscopy, thermal gravimetric analysis, and scanning electron microscopy (SEM). The IR results indicated the formation of intense hydrogen bonds between ZrSPP and SPPES molecules. The SEM micrographs showed that ZrSPP well dispersed with SPPES and form a lattice structure. The proton conductivity of the SPPES (degree of sulfonation (DS) 64 %)/ZrSPP (10 wt%) composite membrane reached 0.39 S/cm at 120 °C 100 % relative humidity and that of the 30 wt% of SPPES (DS 16.1 %)/ZrSPP composite membrane reached 0.18 S/cm at 150 °C. The methanol permeabilities of the SPPES/ZrSPP composite membranes were in the range of 2.1?×?10?8 to 0.13?×?10?8?cm2/s, much lower than that of Nafion®117 (10?6?cm2/s). The composite membranes exhibited good thermal stabilities, proton conductivities, and good methanol resistance properties.  相似文献   

9.
A polyelectrolyte complex (PEC) of chitosan and phosphotungstic acid (PWA) was prepared and characterized as a proton-conducting membrane for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy showed the presence of stable PWA in PEC. To reduce the methanol permeability, several amounts of montmorilonite (MMT) nanoclays (trade name: Cloisite Na) were introduced to the system. The X-ray diffraction patterns of nanocomposite membranes proved the nanoclay layers were exfoliated in the membranes at loading weights of MMT lower than 3 wt%. Proton conductivity and methanol permeability were measured. According to the selectivity parameter—ratio of proton conductivity to methanol permeability—PEC containing 2 wt% MMT (PEC/2 wt% MMT) was identified as the optimum composition. Finally, DMFC performance tests were investigated at 70°C and 5 M methanol feed and the optimum membrane showed higher maximum power density in comparison with Nafion 117. The results indicated the optimum nanocomposite membrane is a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   

10.
This study aimed at investigating the effect of adding copper (Cu) on some properties of the lead-free alloys which rapidly solidified from melt. X-ray analysis, hardness, elastic modulus, electrical conductivity and resistivity were studied. The results indicated that the alloy hardness and elastic modulus improved by increasing the copper (Cu) content and decreasing the zinc (Zn) content. The electrical conductivity ranged from 0.250 to 0.847?×?107 ohm?1 m?1 for the alloy under study. The electrical resistivity increases linearly with temperature until the melting point is reached. The residual resistivity results from disturbances in the lattice rather than caused by thermal vibration and the most drastic increases in the residual resistivity are caused by foreign atoms in solid solution with matrix metal. The electrical resistivity values ranged from 11.8 to 40?×?10?8 ohm m, when the copper content changed from 0.0 to 2.0 wt% and zinc changed from 8.0 to 10.0 wt%.  相似文献   

11.
A series of solid polymer electrolytes (SPEs) based on poly (ethylene oxide)/polylactic acid (PEO/PLA) with liquid crystal ionomer (LCI) intercalated montmorillonite (MMT) nanocomposites (LCI-MMT) has been prepared by solution blending method. The effects of LCI-MMT on the structural, crystallization, thermal, and ionic conductivity properties of solid polymer electrolytes have been analyzed. It is demonstrated that the incorporation of LCI-MMT into the blend suppressed the crystallinity of PEO and increased the crystallinity of PLA. The maximum ionic conductivity is found to be in the range of 1.05?×?10?5 S/cm for 0.5 wt% LCI-MMT, which is higher than that of the LCI-MMT-free polymer electrolyte (5.36?×?10?6 S/cm) at room temperature.  相似文献   

12.
In the present work, a series of five different nanocomposite polymer electrolytes (NCPEs) have been reported with varying contents of ceria, CeO2 nanofiller suitably incorporated within an optimized composition having 75:25 wt% ratio of poly(vinylidenefluoride-co-hexafluoropropylene) [(PVDF-co-HFP)] and zinc trifluoromethanesulfonate (ZnTf) in the form of films obtained by mean of solution casting technique with a general formula [75 wt% PVDF-co-HFP:25 wt% ZnTf]-x wt% CeO2 where x = 1, 3, 5, 7, and 10, respectively. The chosen NCPE system is found to exhibit the maximum electrical conductivity of 3 × 10?4 S cm?1 for 5 wt% loading of CeO2 nanofiller at ambient temperature. The observed conductivity enhancement has been attributed to the occurrence of an increase in the amorphous content as confirmed by X-ray diffraction (XRD) analysis. Detailed Fourier transform infrared (FTIR) spectral analysis has indicated the feasibility of complexation of the host polymer matrix with ZnTf salt and CeO2 nanofiller. The incorporation of CeO2 nanofiller has further increased the decomposition voltage of the polymer electrolyte from 2.4 to 2.7 V as revealed from the voltammetric studies performed on such NCPEs, thereby suggesting the suitability of these NCPE films with an enhanced electrical conductivity as new electrolytes in order to design and fabricate eco-friendly zinc rechargeable batteries and other electrochemical devices.  相似文献   

13.
J. Tian  Z. He  T. Xu  X. Fang 《实验传热》2013,26(3):378-391
The non-Newtonian nano-fluids with 0.1, 0.5, 1, and 2 wt% of multi-walled carbon nano-tubes have been prepared by dispersing different amounts of multi-walled carbon nano-tubes into an aqueous solution of carboxymethyl cellulose at a weight fraction of 3 wt%, respectively. The nano-fluids exhibit the shear-thinning rheological behavior. The viscosity of the nano-fluid increases with the weight fraction of multi-walled carbon nano-tubes and decreases with the increase in temperature. The thermal conductivity of all the nano-fluids is higher than that of the base liquid. The thermal conductivity enhancement is as high as 14.6% for the nano-fluid containing 2 wt% of multi-walled carbon nano-tubes.  相似文献   

14.
The crystallization behavior of uncompatibilized and reactive compatibilized poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends was investigated. In both blends, PTT and PP crystallization rates were accelerated by the presence of each other, especially at low concentrations. When PP content in the uncompatibilized blends was increased to 50–60 wt%, PTT showed fractionated crystallization; a small PTT crystallization exotherm appeared at ~135°C besides the normal ~175°C exotherm. Above 70 wt% PP, PTT crystallization exotherms disappeared. In contrast, PP in the blends showed crystallization exotherms at 113–121°C for all compositions. When a maleic anhydride‐grafted PP (PP‐g‐MAH) was added as a reactive compatibilizer, the crystallization temperatures (T c ) of PTT and PP shifted significantly to lower temperatures. The shift of PTT's T c was larger than that of the PP, suggesting that addition of the PP‐g‐MAH had a larger effect on PTT's crystallization than on PP due to reaction between maleic anhydride and PTT.

The nonisothermal crystallization kinetics was analyzed by a modified Avrami equation. The results confirmed that PTT's and PP's crystallization was accelerated by the presence of each other and the effect varied with blend compositions. When the PP content increased from 0 to 60 wt%, PTT's Avrami exponent n decreased from 4.35 to 3.01; nucleation changed from a thermal to an athermal mode with three‐dimensional growths. In contrast, when the PTT content increased from 0 to 90 wt% in the blends, changes in PP's n values indicated that nucleation changed from a thermal (0–50 wt% PTT) to athermal (60–70 wt% PTT) mode, and then back to a thermal (80–90 wt% PTT) mode. When PP‐g‐MAH was added as a compatibilizer, the crystallization process shifted considerably to lower temperatures and it took a longer crystallization time to reach a given crystallinity compared to the uncompatibilized blends.  相似文献   

15.
The variations of thermal conductivity with temperature for the Ag–[x] wt% Sn–20 wt% In alloys (x=8, 15, 35, 55 and 70) were measured using a radial heat flow apparatus. From the graphs of thermal conductivity versus temperature, the thermal conductivities of solid phases at their melting temperature for the Ag–[x] wt% Sn–20 wt% In alloys (x=8, 15, 35, 55 and 70) were found to be 46.9±3.3, 53.8±3.8, 61.2±4.3, 65.1±4.6 and 68.1±4.8 W/Km, respectively. The variations of electrical conductivity of solid phases versus temperature for the same alloys were determined from the Wiedemann–Franz equation using the measured values of thermal conductivity. From the graphs of electrical conductivity versus temperature, the electrical conductivities of the solid phases at their melting temperatures for the Ag–[x] wt% Sn–20 wt% In alloys (x=8, 15, 35, 55 and 70) alloys were obtained to be 0.036, 0.043, 0.045, 0.046 and 0.053 (×108/Ωm), respectively. Dependencies of the thermal and electrical conductivities on the composition of Sn in the Ag–Sn–In alloys were also investigated. According to present experimental results, the thermal and electrical conductivities for the Ag–[x] wt% Sn–20 wt% In alloys linearly decrease with increasing the temperature and increase with increasing the composition of Sn.  相似文献   

16.
A. K. Nath  A. Kumar 《Ionics》2013,19(10):1393-1403
Ionic conductivity and transport properties of polyvinylidenefluoride–co-hexafluoropropylene– montmorillonite intercalated nanocomposite electrolytes based on ionic liquid 1-butyl-3-methylimidazolium bromide have been studied for various concentrations of montmorillonite clay. Ionic conductivity of the order of 10?3?S?cm?1 at room temperature with thermal stability up to about 235 °C has been obtained for the electrolyte system. The electrolyte system has superior properties at 5 wt% of clay loading with highly amorphous morphology as seen from selected area electron diffraction micrograph. Scanning electron microscope studies show that the electrolyte system has highly porous morphology and the ionic liquid is trapped in the pores. Dielectric properties of the electrolyte system have been studied to investigate the relaxation processes occurring in the system. Variation of real part of dielectric permittivity with frequency shows two relaxation processes occurring in the system, slow at low frequency and fast at high frequency. Kohlrausch exponential parameter has been calculated from modulus formalism, and the values show that the distribution of conductivity relaxation times becomes narrower with increasing clay loading.  相似文献   

17.
The transient current, electrical conductivity, dielectric constant (ε′), and dielectric loss factor (ε″) of starch and methylcellulose homopolymers and their blends with various compositions were studied under different conditions. The x-ray diffraction pattern was obtained for individual polymers and 50:50 wt/wt% blend sample to identify both the structure and degree of crystallinity. From transient current, the ionic and electronic transfer number as well as charge carrier density and drift mobility were determined. The values of activation energy in the temperature range 30–90 °C indicate that the conduction mechanism is due to combined electronic and ionic processes, while in the temperature range 100–160 °C, electronic contribution is predominant. The complex dielectric data of the present samples in an extended frequency and temperature range appear as different relaxation processes, which are connected with polymer dynamics.  相似文献   

18.
Acrylonitrile-butadiene-styrene and poly(?-caprolactone) blends (ABS/PCL) were prepared by mixing styrene-co-acrylonitrile (SAN), polybutadiene-g-SAN (PB-g-SAN), and PCL with varied SAN and PCL composition. PCL is miscible with SAN and can improve the matrix toughness. The impact strength and elongation at break of the ABS/PCL blends increased with the PCL content. When the PCL content was lower than 20 wt%, the improvement of impact strength for the blends was not obvious. A significant increase of impact strength took place when the PCL content was between 20 and 25 wt%. When PCL content was more than 20 wt%, the impact strength was higher than 800 J/m which shows the super toughness. The addition of PCL improved the dispersed phase morphology of PB-g-SAN in the matrix and the interfacial adhesion increased. Deformation observations showed that, when the PCL content was lower than 20 wt%, crazing was the major deformation mode. When the PCL content was 20 wt%, crazing and slight shear yielding could be found. When the PCL content was more than 20 wt%, cavitation of rubber particles and shear yielding of the matrix were the major deformation modes. The cause of the change of the deformation mode lies in the varied matrix composition which modifies the crazing and yielding stresses of the matrix and the final fracture mode and impact toughness.  相似文献   

19.
Sodium ion conducting solid polymer blend electrolyte thin films have been prepared by using polyvinyl alcohol (PVA)/poly(vinyl pyrrolidone) (PVP) with NaNO3 by solution cast technique. The prepared films were characterized by various methods. The complexation of the salt with the polymer blend was identified by X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FTIR), Differential scanning calorimetry was used to analyze the thermal behavior of the samples, and the glass transition temperature is low for the highest conducting polymer material. The scanning electron microscopy gives the surface morphology of the polymer electrolytes. The frequency and temperature dependent of electrical conductivities of the films were studied using impedance analyzer in the frequency range of 1 Hz to 1 MHz. The highest electrical conductivity of 50PVA/50PVP/2 wt% NaNO3 concentration has been found to be 1.25 × 10?5 S cm?1 at room temperature. The electrical permittivity of the polymer films have been studied for various temperatures. The transference number measurements showed that the charge transport is mainly due to ions than electrons. Using this highest conducting polymer electrolyte, an electrochemical cell is fabricated and the parameters of the cells are tabulated.  相似文献   

20.
The present study investigates the ion transport properties and structural analysis of plasticized solid polymer electrolytes (SPEs) based on carboxymethyl cellulose (CMC)-NH4Br-PEG. The SPE system was successfully prepared via solution casting and has been characterized by using electrical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy, and x-ray diffraction (XRD) technique. The highest conductivity of the SPE system at ambient temperature (303 K) was found to be 1.12?×?10?4 S/cm for un-plasticized sample and 2.48?×?10?3 S cm?1 when the sample is plasticized with 8 wt% PEG. Based on FTIR analysis, it shows that interaction had occurred at O–H, C=O, and C–O moiety from CMC when PEG content was added. The ionic conductivity tabulation of SPE system was found to be influenced by transport properties and amorphous characteristics as revealed by IR deconvolution method and XRD analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号