首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Composites of polyamide 66 (PA66)/maleic anhydride grafted poly(ethylene-co-octene) (POE-g-MAH)/nano-calcium carbonate (nano-CaCO3) and PA66/POE-g-MAH/talc were prepared by a one-step blending method. Morphology, crystallization, and mechanical properties of the composite materials were characterized with respect to different amounts of both inorganic fillers, nano-CaCO3 and talc. Results showed that the tensile yield strength and tensile modulus of the composites were increased remarkably with introduction of nano-CaCO3 or talc, but the notched impact strength was significantly lowered for both kinds of composites. Mechanical properties exhibited little difference between the PA66/POE-g-MAH/nano-CaCO3 and PA66/POE-g-MAH/talc composites both for the different shapes and sizes of nano-CaCO3 and the flake-like talc. Results of scanning electron microscopy exhibited agglomeration of the fillers. Differential scanning colorimetry analysis suggested that introduction of the inorganic fillers cause the crystallinity of PA66 to decrease by heterogeneous nucleation. The study provides a basic investigation on polymer/elastomer/rigid filler composites.  相似文献   

2.
A new method of silane treatment of nanoclays is reported where in the clay is nanodispersed in hydrolyzed silanes. The surface functionalization of Cloisite® 15A nanoclay has been carried out using two different silane coupling agents: 3-aminopropyltriethoxy silane and 3-glycidyloxypropyltrimethoxy silane using varied amounts of silane coupling agents, e.g. 10, 50, 200, and 400 wt% of clay. The surface modification of Cloisite® 15A has been confirmed by Fourier transform infrared spectroscopy. The modified clays were then dispersed in epoxy resin, and glass fiber-reinforced epoxy clay laminates were manufactured using vacuum bagging technique. The fiber-reinforced epoxy clay nanocomposites containing silane modified clays have been characterized using small angle X-ray scattering, transmission electron spectroscopy and differential scanning calorimetry. The results indicate that the silane treatment of nanoclay aided the exfoliation of nanoclay and also led to an increase in mechanical properties. The optimized amount of silane coupling agents was 200 wt%. The nanocomposites containing clay modified in 200 wt% of silanes exhibited an exfoliated morphology, improved tensile strength, flexural modulus, and flexural strength. The improved interfacial bonding between silane modified nanoclays and epoxy matrix was also evident from significant increase in elongation at break.  相似文献   

3.
Carbon fiber (CF) / poly (ethylene terephthalate) (PET) composites were prepared with various contents (2–15wt%) of short carbon fibers. To investigate the effect of surface treatment of the CF on the mechanical properties of the composites, three specimens were prepared; those with short carbon fibers (called SCF), short carbon fibers oxidized with nitric acid (called NASCF) and the fibers oxidized with nitric acid and treated with silane coupling agent (called SCSCF). Flexural, tensile and impact tests were performed to observe mechanical behavior of the specimens. The morphology of the specimens was also studied with a scanning electron microscope (SEM). SCSCF composite had better mechanical properties than the other composites with the same content of carbon fibers since the coupling agent resulted in better interfacial adhesion between the fiber and the matrix.  相似文献   

4.
High-density polyethylene (HDPE) nanocomposites reinforced with pristine and vinyltrimethoxysilane (VTMS)-treated alumina nanoparticles of 2, 4, and 6 wt% were melt-compounded in a twin-screw extruder followed by injection molding. Their structure, thermal and mechanical behaviors were studied. Fourier transform infrared (FTIR) spectra showed that VTMS was successfully covalently grafted to the alumina nanoparticles. The X-ray diffraction (XRD) patterns indicated that the alumina nanoparticle additions broadened the characteristic peak width of HDPE, indicating that they reduced the crystallite size of HDPE. The heat deflection temperature and thermogravimetric analyses demonstrated that the dimensional and thermal stability of HDPE were enhanced markedly by adding pristine and silane-treated alumina nanoparticles. The alumina nanoparticle additions were also beneficial in enhancing Young's modulus and yield strength of HDPE. The reinforcing effect was particularly apparent in the silane-treated nanocomposites due to improved filler–matrix interactions.  相似文献   

5.
A novel polyhedral oligomeric silsesquioxane containing phosphorus and boron (PB-POSS) was synthesized. The resulting PB-POSS and multiwalled carbon nanotubes (MWCNTs) were incorporated into an epoxy resin (EP) to prepare PB-POSS/MWCNTs/EP composites through a solution mixing method. The synergistic effect of MWCNTs and PB-POSS on the thermal and mechanical properties and the flame retardancy of these flame retardant composites were studied. The experimental results showed that the introduction of PB-POSS or MWCNTs further improved the LOI values of the epoxy resin, and the highest LOI value (32.8%) was obtained for the formulation containing 14.6 wt% PB-POSS and 0.4 wt% MWCNTs. In addition, the incorporation of both PB-POSS and MWCNTs significantly improved the thermal and mechanical properties of the composites. The mechanical properties of composites containing 14.7 wt% PB-POSS and 0.3 wt% MWCNTs reached the maximum. The impact strength and flexural strength increased by 42% and 7%, respectively, compared to the neat epoxy resin. Thus, a combination of PB-POSS and MWCNTs in the appropriate ratio could effectively enhance the thermal and mechanical properties and the flame retardancy of the epoxy resin matrix.  相似文献   

6.
Ultrahigh molecular weight polyethylene (UHMWPE) fibers were treated with a coupling agent following the extraction of gel fibers, resulting in modified fibers after subsequent ultra-drawing. The structure and morphology of the modified UHMWPE fibers were characterized and their surface wetting, interfacial adhesion, and mechanical properties were investigated. It was found that the coupling agent was absorbed into the UHMWPE fiber and trapped on the fiber surface. Compared with unmodified UHMWPE fibers, the modified fibers had smaller contact angle, higher crystallinity, and smaller crystal size. The interfacial adhesion and mechanical properties of UHMWPE fibers were significantly improved with increasing coupling agent concentration and gradually reached a plateau value. After treatment with 1.5 wt% solution of a silane coupling agent (γ -aminopropyl triethoxysilane, SCA-KH-550), the interfacial shear strength of the UHMWPE-fiber/epoxy composites was increased by 108% and the tensile strength and modulus of modified UHMWPE fibers were increased by 11% and 37% respectively.  相似文献   

7.
A novel flame-retardant cyclotriphosphazene-based epoxy resin (CPEP) was successfully prepared by epoxidation of bis-(4-hydroxyphenylsulfonylphenoxy) tetraphenoxycyclotriphosphazene with epichlorohydrin, and was characterized by 1H nuclear magnetic resonance (NMR), Fourier transform infrared, and gel permeation chromatography (GPC). Then the blends of CPEP and diglycidyl ether of bisphenol A (E51) with different mass ratios were cured using 4,4′-diaminodiphenylmethane as a curing agent. The curing behaviors and the glass transition temperatures of the resulting thermosets were studied by differential scanning calorimetry. The thermal stabilities and flame-retardant properties of the cured resins were studied by thermogravimetric analysis and UL94 tests, respectively. In addition, mechanical, hydrophobic, and electrical properties were also characterized. Compared to the corresponding E51-based thermosets, the cured resins with a mixture of CPEP and E51 showed better thermal stabilities, higher char yields, and greatly improved flame-retardant properties. Furthermore, relatively good mechanical properties, hydrophobicity, and electric resistance were maintained. The cured resins of CPEP/E51 (mass ratio 1:1) achieved UL94 V-0 rating, indicating that the epoxy resin prepared in this study could be used as a flame-retardant coating material.  相似文献   

8.
The preparation, crystallization behavior, and fiber structure and properties of ultrahigh molecular weight polyethylene (UHMWPE) epoxy resin composite fiber were studied by means of differential scanning calorimeter (DSC), X‐ray diffraction (XRD), Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and tensile testing. The morphology showed a different behavior from pure polyethylene (PE) fiber. The fiber mechanical properties, creep behavior, and thermal properties of UHMWPE fiber can be improved by adding epoxy resin. It's believed that the epoxy can serve as a physical cross‐linking agent to limit the motion or migration of PE molecules and consequently improve the fiber creep property. However, when the content of epoxy resin is higher than 5 wt%, all of the behavior and properties deteriorate.  相似文献   

9.
Amino-terminated poly(propylene oxide) (ATPPO) was incorporated into epoxy resin to toughen thermosets. It was found that nanostructured thermosets were obtained; the nanostructures were characterized by means of atomic force microscopy and small-angle X-ray scattering. The formation of the nanostructures is interpreted on the basis of the occurrence of the reaction of terminal groups of ATPPO with diglycidyl ether of bisphenol A; this reaction is suggested to result in the formation of star-shaped block copolymers composed of poly(propylene oxide) (PPO) and epoxy blocks. Due to the presence of the star-shaped block copolymer produced in situ, the phase separation of PPO induced by the reaction was confined to the nanometer scale. The glass-transition behavior and fracture toughness of the nanostructured thermosets were investigated by means of differential scanning calorimetry, dynamic mechanical thermal analysis, and the measurement of critical stress intensity factors. The epoxy thermosets were significantly toughened by the inclusion of a small amount of ATPPO. The thermal and mechanical properties of the nanostructured thermosets are compared to the binary blends of epoxy resin containing hydroxyl-terminated poly(propylene oxide) (HTPPO) with identical molecular weight. With the identical composition, the nanostructured thermosets displayed higher fracture toughness than that of their binary blends. The difference in morphology and properties is interpreted in terms of the formation of the nanostructures.  相似文献   

10.
The effect of four types of silane coupling agents on the mechanical and thermal properties of silicone rubber and ethylene–propylene–diene monomer (M-class) rubber (EPDM) blends is studied, namely, isobutyltriethoxysilane (BUS), acryloxypropyltriethoxysilane (ACS), aminopropyltriethoxysilane (AMS), and vinyltriethoxysilane (VIS). ACS and VIS increase the crosslink density of the blends, which results in higher tensile strength, modulus, and thermal stability, but lower elongation at break compared with the other silanes. However, the blend containing BUS shows highest tanδ in the temperature range of 45°C to 200°C. Thermogravimetric analysis shows two steps of degradation for all the samples, but little difference with the varied silanes.  相似文献   

11.
Silicon carbide nanoparticles (nano-SiC), in the amounts of 0, 3, and 5 parts per hundred of rubber (phr), were employed in a butadiene rubber (BR) based compound as a potential commercial rubber and the structure, mechanical, tribological and thermal properties of the samples were investigated. The use of 3 phr of nano-SiC, especially in the presence of silane, increased the crosslink density and improved the tensile strength (35%) and elongation at break (64%) of the BR. In addition; the abrasion resistance of the BR was improved about 120% and the coefficient of friction increased. Scanning electron microscopy (SEM) images revealed the use of silane resulted in an appropriate dispersion of the nano-SiC and improvement of its interaction with the matrix. The use of nano-SiC, especially with silane, increased the initial thermal decomposition temperature of the BR and decreased its rate of degradation.  相似文献   

12.
The influence of glutaric acid (GA)/cadmium hydroxide [Cd(OH)2] mixtures on the crystallization and properties of isotactic polypropylene (iPP) was investigated by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), polarized light microscopy, and mechanical tests. It was found that the β-crystalline form was produced in the samples containing 0.15 wt% GA and more than 0.17 wt% Cd(OH)2. The content of β-crystalline form was maximum, i.e. KDSC = 65.4% and KWAXD = 71.4%, when the sample was doped with GA (0.15 wt%)/Cd(OH)2 (0.20 wt%) (the molar ratio of GA:Cd(OH)2 was 1:1.2). It was also found that GA/Cd(OH)2 mixtures not only induced the β-crystalline form but also made spherulites smaller. The results of mechanical tests showed that the toughness of iPP was greatly improved by bicomponent nucleator, while the stiffness decreased a little. Fourier transform infrared spectroscopy analysis indicated that an “in-situ” chemical reaction occurred between GA and Cd(OH)2 during melt blending, yielding an effective β nucleator (cadmium glutarate).  相似文献   

13.
Chitosan-gelatin (CG) scaffolds were fabricated with glutaraldehyde as a cross-linker by vacuum freeze-drying. Mixtures of different volumes of chitosan and glutaraldehyde were considered. Morphology, porosity, density, and water absorbency of the scaffolds were studied. Both tensile and compressive properties of the scaffolds were tested. In addition, cellular adherence, proliferation, and morphology on the scaffolds were tested to evaluate the compatibility. It was found that porosity, density, water absorbency, and mechanical properties of CG scaffolds changed with the variation of chitosan or GA content. The adequate adherence, proliferation, and morphology of HaCaT type cells on the scaffolds showed that these scaffolds can be used as carriers for culturing HaCaT. The CG scaffolds, particularly those with chitosan-gelatin volume ratios of 1:1 and adding 6% or 8% volume of 0.25 wt% GA solution, were more suitable than the others through comparing the above properties and could be promising candidates for engineering skin tissue.  相似文献   

14.
The effects of different curing pressures on the structure and properties of bisphenol A type epoxy adhesive film (METLBOND 1515-4, Cytec Industries Inc. Germany) were investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), nano-indentation analysis, and tensile testing. When the curing pressure was increased from 0?MPa to 0.5?MPa FTIR showed that more rigid carbonyl groups were found in the polymers. In addition, the microscopic and macroscopic mechanical properties of the cured adhesive films were improved. Nano-indentation analysis showed that the elastic modulus of the cured product increased significantly, from 2.92?GPa to 3.49?GPa. However, the tensile tests showed that the breaking-elongation increased only slightly, from 3.10% to 3.73%, when the curing pressure was increased from 0?MPa to 0.5?MPa. DMA results showed that the crosslinking densities of the cured epoxy films were improved by the increased curing pressure. These results indicated that a higher modulus of the cured product could be gained by increasing the curing pressure appropriately.  相似文献   

15.
Hollow glass microspheres (HGMs) were surface modified by a rare-earth/titanium coupling agent. Then polypropylene/HGMs composites were prepared by the method of melt blending. The nonisothermal crystallization of the polypropylene (PP) and its composites were investigated by differential scanning calorimetry. The results showed the modified HGMs caused a decrease in the peak crystallization temperature and onset crystallization temperature. Further analysis of the nonisothermal crystallization kinetics, by using the Jeziorny and Mo equations, showed that the crystallization rate rose with increasing cooling rate. Moreover, the presence of the modified HGMs slightly increased the crystallization rates of PP.  相似文献   

16.
Illite powder, modified by an aluminate coupling agent, was used as a filler to strengthen polyvinyl chloride (PVC) resin with mechanical properties of rigid PVC/modified illite composite being tested. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied for the structural characterization of the raw materials. SEM and Fourier transform infrared spectroscopy (FTIR) measurements were used for demonstrating the effect of modification of the illite powder. Results from tests of mechanical properties showed that, when the dosage of modified illite powder was 2 parts per hundred parts by weight, there was an obvious toughening effect on rigid PVC material; the notched impact strength was increased by 59% in comparison to neat rigid PVC, but the elongation of the composites decreased slightly.  相似文献   

17.
Vinyltriethoxysilane (VTES) was grafted onto natural rubber (NR) in latex form, using potassium persulfate (KPS) as initiator. The VTES grafted NR (NR-g-VTES) was then further reinforced with graphene oxide (GO) by a mechanical mixing method with different GO loadings to get the rubber composite (GO/NR-g-VTES). The NR-g-VTES was characterized and confirmed by attenuated total teflectance-Fourier transforms infrared spectroscopy (ATR-FTIR). The effect of GO content on the curing characteristics and resulting mechanical properties of the GO/NR-g-VTES were studied and compared with neat NR filled with GO (NR/GO). The maximum and minimum torque and the tensile and tear strength of the NR-g-VTES/GO composites were higher than that of NR/GO. The samples containing low GO concentration showed maximum torque and tensile and tear strength. Dynamic mechanical analysis showed that the interaction between GO and NR-g-VTES was better than that of the GO-reinforced NR.  相似文献   

18.
Two types of butadiene-acrylonitrile rubbers (i.e., carboxyl randomized butadiene-acrylonitrile rubber (CRBN) and hydroxyl terminated butadiene-acrylonitrile rubber (HTBN)) have been used for modifying an interpenetrating network of cyanate ester (CE)/epoxy resin (EP) (70/30). The toughness of the matrix can be improved effectively with addition of rubbers. The values of impact strength (11.6 KJ/m2) show a maximum for the CE/EP/HTBN (70/30/8) blend. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that CRBN and HTBN have a different dispersion state in the CE/EP matrix. CRBN aggregates to form regular spheres with a size of about 1 μm. HTBN disperse homogeneously with its size of the nano-level (about 10 nm). Fourier transform infrared spectrum (FTIR) and differential scanning calorimetric (DSC) analysis shows that the CRBN has higher reactivity than HTBN. The thermal gravimetric analysis (TGA) results shows that T 10 (temperature of 10% weight loss) of the CE/EP system decreases with the addition of rubbers. For the CE/EP/CRBN system, both T 30 (temperature of 30% weight loss) and T 50 (temperature of 50% weight loss) are lower than neat CE/EP. However, for the CE/EP/HTBN system, both T 30 and T 50 are near to neat CE/EP. Different reactivity and compatibility between the rubbers and CE/EP matrix is the main determining factor for the thermal stability of the blends.  相似文献   

19.
Linear low‐density polyethylene (LLDPE)/multiwalled carbon nanotube (MWNT) nanocomposites were prepared via melt blending. The morphology and degree of dispersion of nanotubes in the polyethylene matrix were investigated using scanning electron microscopy (SEM). Both individual and agglomerates of MWNTs were evident. The rheological behavior and mechanical and electrical properties of the nanocomposites were studied using a capillary rheometer, tensile tester, and Tera ohm‐meter, respectively. Both polyethylene and its nanocomposites showed non‐Newtonian behavior in almost the whole range of shear rate. Addition of carbon nanotubes increased shear stress and shear viscosity. It was also found that the materials experience a fluid‐solid transition below 1 wt% MWNT. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. With increasing nanotube content, the activation energy of flow increases. A decrease of about 7 orders of magnitude was obtained in surface and volume resistivity upon addition of 5 wt% MWNT. In addition, a difference between electrical and rheological percolation thresholds was observed. The results confirm the expected nucleant effect of nanotubes on the crystallization process of polyethylene. A slight increase in Young's modulus was also observed with increasing MWNT content.  相似文献   

20.
The influence of malonic acid (MA) treatment of nano-calcium carbonate (CaCO3) on the crystallization, morphology, and mechanical properties of isotactic polypropylene (iPP)/nano-CaCO3 composites have been studied. The results of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM) show that untreated nano-CaCO3 facilitates the formation of α phase, while MA treated nano-CaCO3 increases the relative content of β phase of iPP dramatically. The results of scanning electron microscopy (SEM) show that MA treated nano-CaCO3 has better dispersion in the matrix than the untreated one. The toughness of PP/MA treated nano-CaCO3 composite is improved drastically. When 2.5 wt% MA treated nano-CaCO3 is added, the Izod notched impact strength reaches its maximum, which is 2.89 times greater than that of the pure iPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号