首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Schiff base designated as 5-[(3-methylthiophene-2-yl-methyleneamino)]-2-mercaptobenzimidazole was synthesized and characterized. A polyvinyl chloride-membrane potentiometric copper(II)-selective sensor was prepared by using the synthesized 5-[(3-methylthiophene-2-yl-methyleneamino)]-2-mercaptobenzimidazole compound. The prepared polyvinyl chloride-membrane copper(II)-selective sensor exhibited very good selectivity and sensitive potentiometric response towards copper(II) ions compared to a wide variety of other cations. The sensor had a fast response time of <5?s, and showed a linear Nerstian behavior to copper(II) ions over a wide concentration range from 1.0?×?10?5 to 1.0?×?10?1 mol L?1 with a slope of 29.2?±?0.7 and correlation coefficient of 0.9998. The prepared polyvinyl chloride-membrane copper(II)-selective sensor was used for 14 weeks without any significant change in its potentiometric response. The potentiometric response of the developed sensor was highly repeatable. Additionally, the developed sensor was used as an indicator electrode for the potentiometric titration of copper(II) ion with ethylenediaminetetraacetic acid. The sensor was also successfully applied to the direct determination of copper(II) ions in tap water, river water, and dam water samples.  相似文献   

2.
A composite multiwalled carbon nanotube polyvinyl chloride electrode based on 7,16‐dibenzyl‐1,4,10,13‐tetraoxa‐7,16‐diazacyclooctadecane (DBDA18C6) as Sm3+ ionophore is reported. This potentiometric sensor showed a wide linear working range, 1×10?2–1×10?8 M, Nernstian slope, 20.2±0.48 mV per decade and a limit of detection, 6.3±0.36×10?9 M. It works in the pH range 2.5–8.5 and shows a good selectivity over a number of metal ions. It has been found suitable for the analysis of ores and industrial effluents. The electrode surface is characterized by FRA and AFM.  相似文献   

3.
《Analytical letters》2012,45(18):2920-2932
ABSTRACT

A novel potentiometric sensor based on a molecular imprinted polymer was developed for the determination of shikimic acid in herbal medicine. The imprinted polymer was synthesized via bulk polymerization of the functional monomer in the presence of trimethylolpropane triacrylate as the cross-linker with 2,2′-azo-bisisobutyronitrile as the initiator and shikimic acid as the template. The sensing membrane was constructed by the inclusion of imprinted polymer in the polyvinyl chloride matrix. The effect of the identity of the imprinted polymer on the potentiometric response was observed. The optimal imprinted polyacrylamide was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The performance of the imprinted membrane based sensor, including the effects of pH, response time and selectivity coefficient, was investigated. The imprinted sensor exhibited a fast near-Nernstian response in the concentration range of 1?×?10?5 to 1?×?10?1?mol/L with a detection limit of 9?×?10?6?mol/L. The analytical performance of the sensor supported the direct determination of shikimic acid in herbs, and the obtained results were validated by ultraviolet-visible absorption spectrophotometry. Advantages of the potentiometric sensor include enhanced sensitivity, high selectivity, long-term stability and low-cost fabrication, suggesting the device offers promise for the analysis of Chinese herbal medicine.  相似文献   

4.
A novel copper(II)-selective electrode based on graphite oxide/imprinted polymer composite was developed for the electrochemical monitoring of copper(II) (Cu2+) ions. The electrode exhibited highly selective potentiometric response to Cu2+ with respect to common alkaline, alkaline earth and heavy metal cations. The composite composition studies indicated that the most suitable composite composition performing the most promising potentiometric properties was 20.0% ionophore (Cu2+-ion imprinted polymer), 10.0% paraffin oil, 5.0% multiwalled carbon nanotubes, and 65.0% graphite oxide. The fabricated electrode exhibited a linear response to Cu2+ over the concentration range of 1.0?×?10??6–1.0?×?10??1?M (correlation coefficient of 0.9998) with a sensitivity of 26.1?±?0.9?mV decade??1. The detection limit of the fabricated electrode was determined to be 4.0?×?10??7?M. The electrode worked well in the pH range of 4.0–8.0. The electrode had stable, reversible and fast potentiometric response (3?s). In addition, the electrode had a lifetime of more than 1 year. The analytical applications of the proposed electrode were performed using as an indicator electrode for the potentiometric titration of Cu2+ with ethylene diamine tetraacetic acid solution and for the determination of Cu2+ of spiked river, dam, and tap water samples. The obtained results for potentiometric titration and water samples were satisfactory.  相似文献   

5.
In this study, all‐solid‐state type potentiometric PVC membrane selective microsensor was developed for Metformin (MET) which is an antidiabetic drug active substance. Metformin‐tetraphenylborate (MET‐TPB) ion‐pair was used as an ionophore in the structure of the sensor membrane. It was determined that the sensor membrane at the ratio of 69 % o‐nitrophenyl octyl ether, 27 % polyvinyl chloride and 4 % MET‐TPB performed the best potentiometric performance. In a wide concentration range (1×10?5–1×10?1 mol/L), the slope, detection limit, response time, pH range, and life‐time of the sensor were determined as 55.9±1.6 mV (R2=0.996), 3.35×10?6 mol/L, 8–10 s, pH: 3–8, and ~10 weeks, respectively. The voltammetric performances of the sensor were also investigated. The prepared microsensor was successfully utilized for the determination of Metformin in a pharmaceutical drug sample by potentiometry and voltammetry. It was observed that the obtained results were in agreement with the results obtained by the UV spectroscopy method at 95 % confidence level.  相似文献   

6.
《Analytical letters》2012,45(4):595-606
A highly sensitive polyvinyl chloride (PVC) membrane electrode, based on copper(II)-bis(N-4-methylphenyl-salicyldenaminato) complex, (CuL2), as a carrier was reported for the determination of chromate ion. The influence of membrane composition, pH, and possible interfering anions on the response of the ion selective electrode was investigated. The sensor exhibited a Nernstian slope of 29.7 mV per decade when the chromate concentration was varied between 2.0 × 10?7–1.50 × 10?2 M in a wide pH range (6.0 to 9.0). The detection limit of the ion selective electrode was 9.2 × 10?8 M. The proposed sensor was used for at least 4 months without any considerable divergence in potential. It was applied as indicator electrode in potentiometric titration of chromate ion with Pb2+ and Tl+.  相似文献   

7.
Salicylic acid is a phytohormone, playing crucial roles in signal transduction, crop growth, and development, and defense to environmental challenges. In this study, a highly selective electrochemical sensor was designed and used to determine salicylic acid using molecularly imprinted polymers for recognition. The electrochemical sensor was fabricated via stepwise modification of gold nanoparticle–graphene–chitosan and molecularly imprinted polymers on a glassy carbon electrode. With electrochemical deposition, a gold nanoparticle–graphene–chitosan film was deposited on the glassy carbon electrode and enhanced the sensitivity. Molecularly imprinted polymers with adsorbed template salicylic acid were added to the surface of the modified electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrodes. Salicylic acid in wheat was quantified by the sensor using the molecularly imprinted polymer/gold nanoparticle–graphene–chitosan/glassy carbon electrode. Concentrations of salicylic acid from 5?×?10?10 to 5?×?10?5?mol?L?1 were determined showing that the developed sensor was suitable for the analysis of food.  相似文献   

8.
A new modified carbon paste electrode for determination of Cu2+ made in our laboratory that used a new synthesized macrocycle 7,16-diaza-1-thia-4,10,13,19-tetraoxa-6,17-dioxo-2,3;20,21-dinaphtho-cyclouneicosane as modifier. This sensor exhibits a good affinity toward copper (II) ions over a wide variety of other metal ions. The electrode exhibits a Nernstian slope of 30 (±0.5) mV per decade for copper (II) ions over a wide concentration range (1.0 × 10?8–1.0 × 10?2 mol L?1), with a limit of detection of 7.0 × 10?9 mol L?1 (~0.45 ppb). It has a response time of 30 s and can be used for at least 3 months without any considerable divergence in responses. The potentiometric response of the electrode is independent of the pH of test solution in the pH range 3.5–7.5. Finally, it was successfully used as an indicator electrode for determination of copper (II) in real samples such as Karoun river and tap water.  相似文献   

9.
《Electroanalysis》2005,17(24):2208-2216
In this paper a novel potentiometric immunosensor for direct and rapid detection of diphtherotoxin (D‐Ag) has been developed by means of self‐assembly of monoclonal diphtheria antibody (D‐Ab) onto a platinum electrode based on nanoparticles mixture (containing gold nanoparticles and silica nanoparticles) and polyvinyl butyral (PVB) as matrixes. At first, D‐Ab was absorbed onto the surface of nanoparticles mixture, and then they were entrapped into polyvinyl butyral sol‐gel network on a platinum electrode. The detection is based on the change in the potentiometric response before and after the antigen‐antibody reaction in a phosphate buffer solution (pH 7.0). The immobilized D‐Ab exhibited direct potentiometric response toward D‐Ag. In comparison to the conventional applied methods, this strategy could allow antibodies immobilized with higher loading amount and better retained immunoactivity, as demonstrated by potentiometric response, cyclic voltammetry and electrochemical impedance spectroscopy of the immunosensor. The immunosensor with nanoparticles mixture exhibited much higher sensitivity, better reproducibility, and long‐term stability than that with gold nanoparticles or silica nanoparticles alone. The linear range was from 5.0×10?3 to 1.2 μg?mL?1 with a detection limit of 1.1×10?3 μg?mL?1. Up to 16 successive assay cycles with retentive sensitivity were achieved for the probes regenerated with in 0.2 mol?L?1 glycine‐hydrochloric acid (Gly‐HCl) buffer solution and 0.25 mol?L?1 NaCl. Moreover, the immunosensor with nanoparticles mixture was applied to evaluate a number of practical specimens with potentiometric results in acceptable agreement with those given by the ELISA method, implying a promising alternative approach for detecting diphtherotoxin in the clinical diagnosis.  相似文献   

10.
The prepared and characterized metformin ‐copper (II) complex was used as elecroactive material for modification of a new sensitive and selective modified carbon paste electrode (MCPE) for the potentiometric determination of copper (II) in water samples. The performance characteristics of MCPE were carried out. The electrode showed perfect potentiometric response for Cu (II) over concentration range of 1.0 × 10?6 – 5.0 × 10?2 mol L?1 with a detection limit of 1.0 × 10?6 mol L?1 with divalent slope value 30.8 ± 0.92 mV decade?1 over the pH range of 2–6 and exhibits fast response time of 9 s. Also, this electrode exhibited good selectivity towards Cu (II) ions with respect to other metal ions. The obtained results using the proposed electrode were in a good agreement with those obtained using the inductively coupled plasma (ICP) method.  相似文献   

11.
Stability constant for mercury binding by commercial and natural humic acids (HA) were determined using a new potentiometric mercury(II) sensor based on dithiosalicylic acid modified carbon paste electrode. The sensor present a high selective and sensitive response to mercury(II) ions, and a low detection limit of 1.8×10?8 M. The potentiometric titrations curves of humic acids against mercury(II) ions were modeled. For 1.00×10?7 to 3.00×10?4 M mercury(II) ion concentration levels the results are consistent with the presence of two different binding sites in the humic acid macromolecule. The strongest binding sites (log K1 ranging from 10.1 to 6.8) are probably due to interaction with carboxylic acid and amine groups in the molecule, whereas weakest binding sites (log K2 ranging from 8.8 to 4.5) can be associated to phenolic groups.  相似文献   

12.
A macrocyclic ligand “7,10,13-triaza-1-thia-4,16-dioxa-20,24-dimethyl-2,3;17,18-dibenzo-cyclooctadecane-6,14-dione” as an efficient ionophore was used into a new Cu2+ nano-composite potentiometric carbon paste sensor containing multi-walled carbon nanotubes (MWCNTs), nanosilica particles, and room temperature ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP]Tf2N). This potentiometric sensor responds to copper ions in a wide linear dynamic range of 4.50 × 10?8 to 1.00 × 10?2 mol L?1 with Nernstian slope of 29.64 ± 0.10 mV per decade. The detection limit of 2.34 × 10?8 mol L?1 was obtained at the pH range 3.5–6.0. It has a fast response with response time of about 10 s, and can be used for at least 16 weeks without any considerable divergence in the potentials. The suggested sensor thus allows sensitive, selective, simple, low cost, and stable electrochemical sensing of Cu2+ ions in the presence of a large number of alkali, alkaline earth, transition and heavy metal ions. This sensor was successfully applied in the determination of copper ions in water and waste water samples.  相似文献   

13.
A novel solid-state selective sensor for mono-hydrogen phosphate (HPO4)?2 based on copper monoamino phthalocyanine (CuMAPc) ionophore covalently attached to poly (n-butyl acrylate) (PnBA) has been developed and potentiometrically evaluated. The all solid-state sensor was constructed by the application of a thin film of a polymer cocktail containing a CuMAPc–PBDA ionophore and benzyl-dimethylhexadecyl ammonium chloride (BDMHAC) as a lipophilic cationic additive onto a gold electrode pre-coated with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) as an ion and electron transducer. The sensor with 14.31 % of CuMAPc-PnBA (ionophore II) exhibited a good selectivity for (HPO4)?2. The thus constructed sensor discriminated many anions, including F?, Cl?, Br?, I, CH3COO?, NO3 ?, ClO4 ?, and SO4 2?. The potentiometric response of the phosphate selective electrode was found to be independent of the pH of sample solution in the range 6–9. The sensor showed a Nernstian slope of ?29.8 ± 0.3 mV conc.?1 decade?1 with linear range of 4.0 × 10?9–1.0 × 10?2 mol L?1 and detection limit of 1.0 × 10?9 mol L?1 at pH 8.0. The proposed phosphate sensor has been utilized as a detector for the flow injection potentiometric determination of phosphate in different water samples at the nanomolar concentration range.  相似文献   

14.
A potentiometric sensor for lead(II) ions based on the use of 1,4,8,11‐tetrathiacyclotetradecane (TTCTD) as a neutral ionophore and potassium tetrakis‐(p‐chlorophenyl)borate as a lipophilic additive in plasticized PVC membranes is developed. The sensor exhibits linear potentiometric response towards lead(II) ions over the concentration range of 1.0×10?5–1.0×10?2 mol L?1 with a Nernstian slope of 29.9 mV decade?1 and a lower limit of detection of 2.2×10?6 mol L?1 Pb(II) ions over the pH range of 3–6.5. Sensor membrane without a lipophilic additive displays poor response. The sensor shows high selectivity for Pb(II) over a wide variety of alkali, alkaline earth and transition metal ions. The sensor shows long life span, high reproducibility, fast response and long term stability. Validation of the method by measuring the lower limit of detection, lower limit of linear range, accuracy, precision and sensitivity reveals good performance characteristics of the proposed sensor. The developed sensor is successfully applied to direct determination of lead(II) in real samples. The sensor is also used as an indicator electrode for the potentiometric titration of Pb(II) with EDTA and potassium chromate. The results obtained agree fairly well with data obtained by AAS.  相似文献   

15.
A novel solid-state electrochemical sensor based on a newly synthesized cross-linked copper(II) doped-copolymer and carbon nanotube material was developed for the direct determination of monohydrogen phosphate ions (HPO42−). The synthesized copolymers were characterized by FTIR, XPS, TG/DTG-DTA and SEM techniques. The sensor had a Nernstian slope:-30.7±0.4 mV/decade, linear concentrations range: 1.0×10−6 - 1.0×10−1 M, detection limit: 6.5×10−7 M, response time: 4 s and life time: 17 weeks. The sensor displayed constant potentials in the pH range 7.0-9.5. The sensor was successfully used as an indicator electrode in potentiometric titration and the direct determination of HPO4 2− in water samples.  相似文献   

16.
An adsorptive stripping voltammetric procedure for the determination of folic acid at an in situ plated lead film electrode was described. Formation of lead film on a glassy carbon substrate and accumulation of folic acid was performed simultaneously from an acetate buffer solution of pH 5.6 at the potential ?0.88 V. The measurements were carried out from aerated solutions. The calibration graph for an accumulation time of 300 s was linear from 2×10?9 to 5×10?8 mol L?1. The detection limit was 7×10?10 mol L?1, the relative standard deviation for 2×10?8 mol L?1 of folic acid was 3.9%. The proposed procedure was applied to folic acid determinations in pharmaceutical preparations.  相似文献   

17.
A new method for the determination of trace copper was described. A multiwalled carbon nanotube modified carbon paste electrode was prepared and the adsorptive voltammetric behavior of copper‐alizarin red S (ARS) complex at the modified electrode was investigated. By use of the second‐order derivative linear sweep voltammetry, it was found that in 0.04 mol/L acetate buffer solution (pH 4.2) containing 4×10?6 mol/L ARS, when accumulation potential is 0 mV, accumulation time is 60 s and scan rate is 100 mV/s, the complex can be adsorbed on the surface of the electrode, yielding one sensitive reduction peak at ?172 mV (vs. SCE). The peak current of the complex is proportional to the concentration of Cu(II) in the range of 2.0×10?11–4.0×10?7 mol L?1 with a detection limit (S/N=3) of 8.0×10?12 mol/L (4 min accumulation). The proposed method was successfully applied to the determination of copper in biological samples with satisfactory results, the recoveries were found to be 96%–102%.  相似文献   

18.
Pankaj Kumar 《Electroanalysis》2012,24(10):2005-2012
A new ionophore, i.e. p‐(2‐thiazolazo)calix[4]arene ( I ) has been explored for its selective behavior towards Ni(II) ions. A poly(vinyl chloride) based membrane containing ( I ) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and nitrophenyloctyl ether in the ratio 10 : 100 : 3 : 150 (I:PVC:NaTPB:NPOE) (w/w) was used to fabricate an all solid state nickel(II)‐selective sensor. The developed sensor exhibited a working concentration range of 1.0×10?6–1.0×10?1 M, with a Nernstian slope of 28.9±1.0 mV/decade of activity and a response time of 10–15 s. This sensor shows a detection limit of 9.0×10?7 M. Its potential response remains unaffected of pH in the range 3.0–7.6, and the cell assembly could be used successfully in partially nonaqueous medium (up to 10 % v/v) without any significant change in the slope value or the working concentration range. The sensor worked satisfactorily for about ten weeks and exhibited excellent selectivity over a number of mono‐, bi‐, and tri‐valent cations including alkali, alkaline earth metal, and transition metal ions. It could be used as an indicator electrode for the end point determination in the potentiometric titration of nickel ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of nickel ion concentration in real samples.  相似文献   

19.
A polymeric membrane based Pb(II) selective potentiometric sensor was developed by using 1,3,7,9-tetraaza-2,8-dithia-4,10-dimethyl-6,12-diphenylcyclododeca-4,6,10,12-tetraene (TDDDCT) as an electroactive material along with anion excluder sodium tetraphenylborate (NaTPB) and plasticizer dioctylphthalate (DOP). The best performance in terms of slope, concentration range and response time was exhibited by the membrane having TDDDCT:PVC:DOP:NaTPB in the ratio 3:32:62:3 (w/w%). Potentiometric results show that the developed sensor works well in the concentration range 5.0 × 10?7–1.0 × 10?1 M with a near Nernstian slope of 29.5 (±0.5) mV decade?1. The detection limit is down to 2.5 × 10?7 M. The working pH range of this sensor is 2.8–7.0 and it works well in partially nonaqueous medium up to 25 % (v/v) methanol and ethanol. It exhibits a fast response time of 10 s. Selectivity coefficient values of various interfering ions were determined by the fixed interference method (FIM). The sensor reveals good selectivity for Pb(II) ions over other metal ions investigated. The developed sensor is used in the determination of lead in ‘Eveready battery waste’ and as an indicator electrode in the potentiometric titration of Pb(II) against EDTA.  相似文献   

20.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号