首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(13):1623-1634
Abstract

Human growth hormone (hGH) was demonstrated in normal urine by a highly specific and sensitive sandwich enzyme immunoassay. The molecular weight of hGH in normal urine was shown to be 22,000 by gel filtration, and levels of urine hGH were 15–64 ng/1 or 50–83 ng/g of creatinine in normal subjects aged 1.2–5.9 yr.  相似文献   

2.
《Analytical letters》2012,45(7):1083-1097
Abstract

A sensitive sandwich enzyme immunoassay for human inter-leukin-2 (hIL-2) using monoclonal antibody IS described. A monoclonai anti-hIL-2 IgG-coated poiystyrene ball was incubated with hIL-2 and subsequently with affinity-purified rabbit anti-hIL-2 Fab'-horseradish peroxidase conjugate. Peroxidase activity bound to the polystyrene ball was assayed by fluorimetry using 3-(4-hydroxyphenyl)propionic acid as a substrate. There was no cross-reaction with interleukins 1α and 1bT, epidermal growth factor, insulin and other protein hormones. The detection limit of hIL-2 was 3 pg/tube or 30 ng/1 using 0.1 ml of cuiture supernatant. When peripheral blood mononuclear cells from healthy subjects aged 22-62 yr were cultured in the absence and presence of phytohemagglutinin P for 48 h, hIL-2 levels in the culture supernatants were <0.03-0.10 μg/1 and 0.18-3.7 μg/1, respectively.  相似文献   

3.
In this paper, an electrochemical magneto-immunosensor for the detection of human growth hormone (hGH) is described for the first time. The immunosensor involves the use of tosyl-activated magnetic microparticles (TsMBs) to covalently immobilize a monoclonal mAbhHG antibody. A sandwich-type immunoassay with a secondary pAbhGH antibody and anti-IgG labelled with alkaline phosphatase (anti-IgG-AP) was employed. TsMBs–mAbhGH–hGH–pAbhGH–anti-IgG-AP conjugates were deposited onto the surface of a screen-printed gold electrode using a small neodymium magnet, and electrochemical detection was performed by square-wave voltammetry upon the addition of 4-aminophenyl phosphate as the AP substrate. All the variables involved in the preparation of immunoconjugates and in the immunoassay protocol were optimized. A calibration curve for hGH was constructed with a linear range between 0.01 and 100 ng/mL (r?=?0.998) and a limit of detection of 0.005 ng/mL. This value is nearly three orders of magnitude lower than that obtained using surface plasmon resonance (Treviño et al., Talanta 78:1011–1016, 2009). Furthermore, good repeatability, with RSD?=?3% (n?=?10) at the 1-ng/mL hGH level, was obtained. Cross-reactivity studies with other hormones demonstrated good selectivity. The magneto-immunosensor was applied to the analysis of human serum spiked with hGH at the 4- and 0.1-ng/mL levels. Mean recoveries of 96?±?6% and 99?±?2%, respectively, were obtained.  相似文献   

4.
Abstract

A high-performance liquid chromatographic method for the analyses of ciprofloxacin (BAY o 9867) (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid hydrochloride) in human serum, plasma and urine samples is described. Diluted serum, plasma, and urine samples are injected onto a RP-18 column without prior extraction or clean-up procedure. Ciprofloxacin is separated from the ballast by an eluent consisting of an 0.025M H3PO4 solution adjusted to pH=3 with tetrabutylammonium hydroxide and acetonitrile.

Ciprofloxacin is detected fluorimetrically giving a detection limit of 8ng/ml in plasma and serum and of 50ng/ml in urine. A statistical evaluation of the assay showed acceptable accuracy and precision for 10 to 500ng of BAY o 9867 per ml in serum and plasma and for 50ng to 600ng of BAY o 9867 per ml of diluted urine specimens. This method was used to monitor the concentrations of BAY o 9867 in serum, plasma and urine of volunteers after oral administration of ciprofloxacin.  相似文献   

5.
Malondialdehyde has been used as a biomarker for lipid peroxidation in biological samples. An ultra‐high performance liquid chromatography with tandem mass spectrometry method was developed to determine the levels of malondialdehyde in human urine and saliva samples. To select the optimum derivatization reagent from four diamino compounds, the reactivity and sensitivity of their derivatives were compared, and 3,4‐diaminobenzophenone was selected. The optimum reaction conditions for malondialdehyde with 3,4‐diaminobenzophenone were as follows: a reagent dosage of 50 mg/L, pH of 4, and reaction for 30 min at 50°C. The formed derivative product was analyzed using ultra‐high performance liquid chromatography with tandem mass spectrometry without additional extraction or concentration steps. In the optimal conditions, the method was used to determine malondialdehyde concentration in human urine and saliva samples. The limits of quantification for malondialdehyde in biological samples were over a concentration range of 0.1–0.3 μg/L. Additionally, the calibration curve showed a linearity greater than r = 0.997. The method was used to analyze 14 human urine and saliva samples from healthy volunteers. Malondialdehyde was detected in the concentration range of 1.7–33.6 μg/g creatinine in all human urine samples and 0.1–1.3 μg/L in all human saliva samples.  相似文献   

6.
Abstract

A sensitive HPLC method with minimal sample preparation and good reproducibility for the determination of furosemide in plasma and urine is described. Acidified plasma samples were extracted using CH2Cl2 containing desmethylnaproxen as internal standard (IS). Fresh urine samples were incubated with β-gluc-uronidase for 15 minutes and then treated with CH3CN containing IS.

Chromatography was performed on a C18 column with 10 mcl sample injection, Mobile phases were: a) for plasma: 0.01 M NaH2PO4, pH 3.5 - CH3OH (65:35), and b) for urine: acetic acid, pH 3.5 - CHS3OH (60:40) at 3 ml/min and fluorescence detection at Ex 235/Em 389 nm. The plasma standard curve was linear from 0.01 to 15.0 mcg/ml and the urine from 0.5 to 200.0 mcg/ml. The within run CV's were 3,2% at 0.74 mcg/ml plasma and 2.0% at 10.7 mcg/ml urine. Recovery from plasma was 69.9% at 2.0 mcg/ml and 98.6% from urine at 5.0 mcg/ml. The stability of furosemide and its glucuronide were studied. Both methods have been applied to the analysis of plasma and urine samples obtained from human volunteers.  相似文献   

7.
建立了准确、快速测定痕量人体生长激素的同位素稀释质谱法。选取同位素标记脯氨酸、缬氨酸和苯丙氨酸为内标物,将内标物以重量法与待测样品准确混合,利用Kinetex C18色谱柱分离,以电喷雾三重串联四级杆质谱多反应监测模式测定,建立了人体生长激素的液相色谱–同位素稀释质谱联用定量方法。人体生长激素溶液标准物质的含量测定结果为(1.82±0.04)mg/g,相对标准偏差为0.43%(n=6)。该方法简易、实用、准确、可靠,可作为人体生长激素溶液标准物质的定值方法,并为人体生长激素的日常检测提供参考。  相似文献   

8.
《Analytical letters》2012,45(15):1501-1515
Abstract

In vivo studies of urinary bis(2-ethylhexyl)phthalate (DEHP) levels in dogs and in non-uremic patients undergoing hemodialysis treatments for psoriasis were undertaken. Dogs were divided into 3 groups: Control, Sham-Operated, and Nephrectomized. Each dog received 225 mg DEHP per kilogram body weight via the femoral vein. Each of the non-uremic patients underwent hemodialysis therapy for 4–5 hours once a week for four consecutive weeks to treat their psoriatic condition. Specimens of 2 4 hr urine were collected and analyzed for DEHP by gas chromatography. The detection limit of DEHP in urine is 15 ng/ml. No detectable DEHP was found in the urine of all pre-injection specimens obtained from all three groups of dogs. The total urinary DEHP concentrations for the four day period were found to be 76.1 and 192.2 μg for the Control and the Sham-Operated dogs, respectively. No urine samples could be collected from the Nephrectomized dogs. DEHP levels were found in the 24 hr urine specimens from some of the non-uremic patients undergoing hemodialysis therapy. The DEHP concentrations ranged from non-detectable to 159.8 yg/24 hrs. Normal renal function seems to be necessary for the excretion of non-metabolized DEHP.  相似文献   

9.
A novel nanocomposite electrode material constituted of gold nanoparticles (AuNPs), multi-walled carbon nanotubes (MWCNTs) and n-octylpyridinium hexafluorophosphate (OPPF6) ionic liquid was prepared and checked for the development of electrochemical (bio)sensing devices. AuNPs/MWCNTs/OPPF6 paste electrodes with micrometer dimensions (500 μm, i.d.) were constructed and applied to the determination of cortisol and androsterone hormones. Regarding cortisol determination, the microsized paste electrode was used to detect 1-naphtol generated upon addition of 1-naphthyl phosphate as enzyme substrate in the competitive immunoassay between alkaline phosphatase-labelled cortisol and cortisol. Squarewave voltammetry allowed determining the hormone within the 0.1- to 10-ng/mL linear range (r?=?0.990) with a detection limit of 15 pg/mL and a EC50 value of 0.46?±?0.06 ng/mL cortisol. The method was applied to the determination of cortisol in urine and serum samples containing a certified cortisol content. Moreover, a microsized enzyme biosensor prepared by bulk modification of the AuNPs/MWCNTs/OPPF6 electrode with the enzyme 3α-hydroxysteroid dehydrogenase was used for the determination of androsterone through the amperometric detection of reduced nicotinamide adenine dinucleotide. A calibration plot with a linear range between 0.1 and 120 μg/mL (r?=?0.993) and a limit of detection of 89 ng/mL were obtained. The biosensor was applied to the analysis of human serum spiked with androsterone at the 250 ng/mL concentration level.  相似文献   

10.
Arsenic compounds were determined in 21 urine samples collected from a male volunteer. The volunteer was exposed to arsenic through either consumption of codfish or inhalation of small amounts of (CH3)3As present in the laboratory air. The arsenic compounds in the urine were separated and quantified with an HPLC–ICP–MS system equipped with a hydraulic high-pressure nebulizer. This method has a determination limit of 0.5 μg As dm−3 urine. To eliminate the influence of the density of the urine, creatinine was determined and all concentrations of arsenic compounds were expressed in μg As g−1 creatinine. The concentrations of arsenite, arsenate and methylarsonic acid in the urine were not influenced by the consumption of seafood. Exposure to trimethylarsine doubled the concentration of arsenate and increased the concentration of methylarsonic acid drastically (0.5 to 5 μg As g−1 creatinine). The concentration of dimethylarsinic acid was elevated after the first consumption of fish (2.8 to 4.3 μg As g−1 creatinine), after the second consumption of fish (4.9 to 26.5 μg As g−1 creatinine) and after exposure to trimethyl- arsine (2.9 to 9.6 μg As g−1 creatinine). As expected, the concentration of arsenobetaine in the urine increased 30- to 50-fold after the first consumption of codfish. Surprisingly, the concentration of arsenobetaine also increased after exposure to trimethylarsine, from a background of approximately 1 μg As g−1 creatinine up to 33.1 μg As g−1 creatinine. Arsenobetaine was detected in all the urine samples investigated. The arsenobetaine in the urine not ascribable to consumed seafood could come from food items of terrestrial origin that—unknown to us—contain arsenobetaine. The possibility that the human body is capable of metabolizing trimethyl- arsine to arsenobetaine must be considered. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
Proanthocyanidins, flavonoids exhibiting cardiovascular protection, constitute a major fraction of the flavonoid ingested in the human diet. Although they are poorly absorbed, they are metabolized by the intestinal microbiota into various phenolic acids. An analytical method, based on an optimized 96-well plate solid-phase extraction (SPE) procedure and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the analysis of 19 phenolic microbial metabolites and monomeric and dimeric flavanols in urine samples, was developed and validated. Human urine samples were obtained before and after ingestion of an acute consumption of 40 g of soluble cocoa powder and rat urines before and after the prolonged administration (2 weeks) of different diets composed of natural cocoa powder. The mean recovery of analytes using the new SPE-LC-MS/MS method ranged from 87% to 109%. Accuracy ranged from 87.5% to 113.8%, and precision met acceptance criteria (<15% relative standard deviation). Procyanidin B2 has been detected and quantified for the first time in human and rat urine after cocoa consumption. Changes in human and rat urinary levels of microbial phenolic acids and flavanols were in the range of 0.001–59.43 nmol/mg creatinine and of 0.004–181.56 nmol/mg creatinine, respectively. Major advantages of the method developed include reduction of laboratory work in the sample preparation step by the use of 96-well SPE plates and the sensitive measurement of a large number of metabolites in a very short run time, which makes it ideal for use in epidemiological studies. a INGENIO-CONSOLIDER Program, Fun-c-food CSD2007-063 b CIBER 06003 Physiopathology of Obesity and Nutrition (CIBEROBN), and RETICS RD06/0045/0003, Instituto de Salud Carlos III  相似文献   

12.
To obtain quantitative information on human metabolism of selenium, we have performed selenium speciation analysis by HPLC/ICPMS on samples of human urine from one volunteer over a 48-hour period after ingestion of selenium (1.0 mg) as sodium selenite, L-selenomethionine, or DL-selenomethionine. The three separate experiments were performed in duplicate. Normal background urine from the volunteer contained total selenium concentrations of 8–30 μg Se/L (n=22) but, depending on the chromatographic conditions, only about 30–70% could be quantified by HPLC/ICPMS. The major species in background urine were two selenosugars, namely methyl-2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (selenosugar 1) and its deacylated analog methyl-2-amino-2-deoxy-1-seleno-β-D-galactopyranoside (selenosugar 3). Selenium was rapidly excreted after ingestion of the selenium compounds: the peak concentrations (∼250–400 μg Se/L, normalized concentrations) were recorded within 5–9 hours, and concentrations had returned to close to background levels within 48 hours, by which time 25–40% of the ingested selenium, depending on the species ingested, had been accounted for in the urine. In all experiments, the major metabolite was selenosugar 1, constituting either ∼80% of the total selenium excreted over the first 24 hours after ingestion of selenite or L-selenomethionine or ∼65% after ingestion of DL-selenomethionine. Selenite was not present at significant levels (<1 μg Se/L) in any of the samples; selenomethionine was present in only trace amounts (∼1 μg/L, equivalent to less than 0.5% of the total Se) following ingestion of L-selenomethionine, but it constituted about 20% of the excreted selenium (first 24 hours) after ingestion of DL-selenomethionine, presumably because the D form was not efficiently metabolized. Trimethylselenonium ion, a commonly reported urine metabolite, could not be detected (<1 μg/L) in the urine samples after ingestion of selenite or selenomethionine. Cytotoxicity studies on selenosugar 1 and its glucosamine isomer (selenosugar 2, methyl-2-acetamido-2-deoxy-1-seleno-β-D-glucosopyranoside) were performed with HepG2 cells derived from human hepatocarcinoma, and these showed that both compounds had low toxicity (about 1000-fold less toxic than sodium selenite). The results support earlier studies showing that selenosugar 1 is the major urinary metabolite after increased selenium intake, and they suggest that previously accepted pathways for human metabolism of selenium involving trimethylselenonium ion as the excretionary end product may need to be re-evaluated.  相似文献   

13.
Abstract

A liquid chromatographic method is described for the determination of the new fluoroquinolone Ro 23–6240 and its N-demethyl and N-oxide metabolites in plasma and urine. The three substances were extracted from aqueous solution with dichloromethane/isopropanol containing sodium dodecyl sulphate. After evaporation and reconstitution, samples were analysed on a reversed-phase column using ion pair chromatography and fluorescence detection. The limit of quantification was 10–20 ng/ml (RSD 4%) using a 0.5 ml plasma sample, and the inter assay precision was 3–10% over the concentration range 50 ng/ml to 20 μg/ml. Recovery from plasma was 81% (RSD 10%) over the range 10 ng/ml to 5 μg/ml. The method has been applied successfully to the analysis of several thousand samples from human pharmacokinetic studies. Care has to be taken to avoid exposure of samples to direct sunlight, and the use of opaque vessels for sample storage and handling is recommended.  相似文献   

14.
Abstract

Creatinine determination in urine and plasma affords an index of the renal function. Reversed-phase high pressure liquid chromatography was used for the separation and quantitation of creatinine in normal and arsenic exposed human urine samples. Acetonitrile/water (1:1) was the mobile phase. The method was compared with the Jaffé alkaline picrate reaction. Results show that the HPLC procedure has high reproducibility and samples are stable at the storage conditions. Plasma samples required depro-teinization and extraction with CH3CN prior to HPLC analysis, while urine samples required only centrifugation.  相似文献   

15.
《Analytical letters》2012,45(8):1575-1587
ABSTRACT

Four azo compounds based on diazotization of 2-aminobenzothiazole have been synthesized and characterized by elemental analysis as well as different spectroscopic techniques. The potentiality of the prepared compounds as new chromogenic reagents for the spectrophotometric determination of Mo6+ was studied by extensive investigation of optimum conditions favouring the formation of the coloured complexes. Beers law is obeyed in the concentration range 0.2-8.5 μg ml?1 whereas Ringbom optimum concentration range was 0.8-7.5 μg ml?1. The detection limit was 0.05 μg ml?1. The molar absorptivity and Sandell sensitivity of the formed complexes are calculated. The effect of interfering ions on the determination of Mo6+ was investigated. The relative standard deviations for six replicate determinations of 5.0 μg ml?1 of Mo6+ are 1.23, 1.47, 1.05 and 1.38 % using reagents I, II, III and IV, respectively. The proposed method has been applied to investigate the amount of Mo6+ in human urine samples. The molybdenum levels found between 0.5-2.1 μg/100 ml.  相似文献   

16.
A selective and highly sensitive liquid chromatography–tandem mass spectrometry method has been developed and validated for determination of Bisphenol A (BPA) in human urine using labeled d6-BPA as internal standard. BPA was purified from human urine by affinity chromatography on solid extraction AFFINIMIP® Bisphenol A cartridges, based on molecularly imprinted polymers. After purification, the samples were analyzed on a Phenomenex Kinetex 100?×?4.6 mm, 2.6 μm particle PFP reversed-phase HPLC column, coupled to a triple quadrupole mass spectrometer by an electrospray ion source. Analyses were performed in the multiple reaction monitoring mode and negative ionization; the product ions at 133.2 and 212.1?m/z for BPA and at 138.2 and 215.0?m/z for d6-BPA were monitored to assess unambiguous identification. The linearity of the detector response was verified in human urine over the concentration range 0.100–200 ng/mL. The detection limit was calculated as 0.03 ng/mL and the limit of quantification of the method is 0.10 ng/mL. This LC/ESI-MS/MS method was in-house validated evaluating specificity, trueness, within-day and between-days precision. The mean recoveries of BPA from spiked urine samples were higher than 94 % and good reproducibility (relative standard deviations?≤?8.1 %) was observed. The developed method was applied to a pilot study involving 105 children, aged from 6 to 14 years (16 normal weight and 89 obese children), from the Regione Campania (Southern Italy). The aim of this study was to determine the concentrations of BPA in urine of children and possible correlations with childhood obesity.  相似文献   

17.
The fatty acid esters of 3-(N-phenylamino)propane-1,2-diol (PAP) are biomarkers of toxic oil batches that caused toxic oil syndrome (TOS), an intoxication that caused over 400 deaths and affected 20,000 people in Spain in 1981. PAP esters are converted into PAP by human pancreatic lipase. The in vivo biotransformation of PAP in two mouse strains generated potentially toxic metabolites. Here we report an enzyme-linked immunosorbent assay (ELISA) for PAP detection incorporating antibodies generated using PAP-hapten derivatives 1 and 2. The immunizing haptens were designed to recognize the phenylamino and hydroxymethylene moieties of the PAP structure. The antisera raised against 1-HCH showed greater affinity for free PAP, as demonstrated in competitive experiments using either 1-BSA or 2-BSA as coating antigens. The developed ELISA detects PAP at a threshold of 130 μg L−1 and can be used over a wide range of pH and ionic strength values. The assay can be applied to human urine samples, after a simple treatment method, with good recovery according to the correlation obtained when analyzing blind spiked urine samples. Figure Development of an ELISA for PAP in human urine  相似文献   

18.
Abstract

Metoclopramide concentrations in plasma and urine were determined by high performance liquid chromatography using a cyanopropylsilane column and UV detection. The mobile phase consisted of 0.03M sodium acetate (pH 7.4) and acetonitrile. The plasma samples were extracted with dichloromethane after pH adjustment. Urine proteins were precipitated with acetonitrile. The reproducibility and precision of the methods were demonstrated by the analysis of samples containing 5 – 200 ng/ml plasma and 0.25 – 200 ug/ml urine.

The glucuronide and sulfate conjugates of metoclopramide were also quantitated after differential acid hydrolysis of urine samples. The conditions for acid hydrolysis were studied. The methods have been applied to the analysis of plasma and urine samples obtained from human volunteers.  相似文献   

19.
《Analytical letters》2012,45(12):941-949
Abstract

An HPLC method for analysis of atenolol in human plasma and urine is presented. Based on alkaline extraction, acid backextraction and reverse phase ion-pair chromatography this method is quite specific for atenolol. For a 0.5 ml plasma sample the sensitivity ranges from 20 ng/ml in fasted healthy volunteers to 50 ng/ml in various groups of patients. A sensitivity in urine of 1.0 mcg/ml was sufficient for all samples studied. As presented this method has been used in several clinical pharmacokinetic studies involving hundreds of samples.  相似文献   

20.
A novel method for the analysis of (3‐hydroxypropyl)mercapturic acid (HPMA), a major acrolein metabolite in human urine incorporating a molecularly imprinted solid‐phase extraction (MISPE) process using N‐acetylcysteine ‐imprinted mesoporous silica particles coupled with LC‐MS/MS detection was developed. The molecularly imprinted mesoporous silica particles were synthesized based on the supported material of ordered mesoporous silica SBA‐15 with N‐acetylcysteine (NAC) as template using surface molecular imprinting technology. The condition of MISPE procedures was optimized. The use of MISPE improved the accuracy and precision of the LC‐MS method and lowered the limit of detection (0.23 ng/mL). The recoveries at three spiked levels ranged between 88.5% to 108.6%. The developed MISPE method enabled the selective extraction of HPMA successfully in human urine and could be used as an effective approach for the determination of ultra‐trace HPMA in complex biological matrices. The results in real samples showed that median levels of HPMA were significantly higher (1922.0 ng/mg of creatinine, N = 75) in smokers than in nonsmokers (759.1 ng/mg of creatinine, N = 5), demonstrating the higher acrolein uptake in smokers than in nonsmokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号