首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Analytical letters》2012,45(8-9):545-551
Abstract

A liquid-state ion-selective electrode which is sensitive to tetrafluoroborate ion, and which is based on Brilliant green tetrafluoroborate, has been developed. A chlorobenzene solution of the basic dye salt is absorbed into natural rubber sheeting which acts as the membrane in the electrode. At concentrations of tetrafluoroborate ion between 10?4 and 10?1 M a near Nernstian slope of 58.5 mV per decade change of concentration was obtained at 25°C; the potential response became steady within 1 minute at each concentration. Selectivity constants are given for a range of anions of which only perchlorate interferes markedly (KBF 4-/ClO 4- = 1.0 to 1.6).  相似文献   

2.
An amperometric enzyme electrode for the determination of hypoxanthine in fish meat is described. The hypoxanthine sensor was prepared from xanthine oxidase immobilized by covalent binding to cellulose triacetate and a carbon paste electrode containing hydroxymethylferrocene. The xanthine oxidase membrane was retained behind a dialysis membrane at a carbon paste electrode. The sensor showed a current response to hypoxanthine due to the bioelectrocatalytic oxidation of hypoxanthine, in which hydroxymethyiferrocene served as an electron-transfer mediator. The limit of detection is 6 × 10?7 M, the relative standard deviation is 2.8% (n=28) and the response is linear up to 7 × 10?4 M. The sensor responded rapidly to a low hypoxanthine concentration (7 × 10?4 M), the steady-state current response being achieved in less than 1 min, and was stable for more than 30 days at 5 ° C. Results for tuna samples showed good agreement with the value determined by the conventional method.  相似文献   

3.
《Analytical letters》2012,45(8):1111-1118
Abstract

Three enantioselective, potentiometric electrodes were proposed for the enantioanalysis of butaclamol. The electrodes were based on immobilization of maltodextrins (MDs) of different dextrose equivalences [4.0–7.0, I; 13–17, II; 16.5–19.5, III] into carbon paste. The electrodes based on MD I and II were used for the enantioanalysis of S-butaclamol within linear concentration ranges of 10?10 to 10?7 and 10?10 to 10?8, respectively, with slopes of 51.20 and 57.59 mV/decade of concentration; whereas the electrode based on MD III was used for the enantioanalysis of R-butaclamol within a linear concentration range between 10?10 and 10?7 with a slope of 58.50 mV/decade of concentration. Recoveries greater than 90% were recorded for the enantioanalysis of butaclamol in synthetic and urine samples.  相似文献   

4.
Electrochemical methods represent an important class of widely used techniques for the detection of metal ions. The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. This study focused on the synthesis of a nano‐Fe(III)–Sud complex and its characterization using various spectroscopic and analytical tools, optimized using the density functional theory method, screened for antibacterial activity and evaluated for possible binding to DNA using molecular docking study. Proceeding from the collected information, nano‐Fe(III)–Sud was used further for constructing carbon paste and screen‐printed ion‐selective electrodes. The proposed sensors were successfully applied for the determination of Fe(III) ions in various real and environmental water samples. Some texture analyses of the electrode surface were conducted using atomic force microscopy. At optimum values of various conditions, the proposed electrodes responded towards Fe(III) ions linearly in the range 2.5 × 10?9–1 × 10?2 and 1.0 × 10?8–1 × 10?2 M with slope of 19.73 ± 0.82 and 18.57 ± 0.32 mV decade?1 of Fe(III) ion concentration and detection limit of 2.5 × 10?9 and 1.0 × 10?8 M for Fe(III)–Sud‐SPE (electrode I) and Fe(III)–Sud‐CPE (electrode II), respectively. The electrode response is independent of pH in the range 2.0–7.0 and 2.5–7.0, with a fast response time (4 and 7 s) at 25°C for electrode I and electrode II, respectively. Moreover, the electrodes also showed high selectivity and long lifetime (more than 6 and 3 months for electrode I and electrode II, respectively). The electrodes showed good selectivity for Fe(III) ions among a wide variety of metal ions. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

5.
《Electroanalysis》2003,15(2):126-132
Potentiometric carbon paste electrodes for copper(II) based on dithiosalicylic and thiosalicylic acids are described. The sensor based on dithiosalicylic acid (DTS) exhibits a linear response with a nearly Nernstian slope of 27.7 mV per decade, whereas the electrode based on thiosalicylic acid (TS) shows a super‐Nernstian slope. The limits of detection for the DTS sensor and the TS sensor are 10?7.9and 10?6.3 M for copper(II) activity, respectively. Selectivity coefficients are tabulated, and the influence of the pH on the response of these ISEs is studied. The DTS electrode is successfully used for potentiometric titration of humic acids with copper in order to get more information about complexing properties of these acids.  相似文献   

6.
《Electroanalysis》2004,16(19):1561-1568
A new methodology, based on silver electrocatalytic deposition and designed to quantify gold deposited onto carbon paste electrode (CPE) and glassy carbon electrode (GCE), has been developed in this work. Silver (prepared in 1.0 M NH3) electrodeposition at ?0.13 V occurs only when gold is previously deposited at an adequate potential on the electrode surface for a fixed period of time. When a CPE is used as working electrode, an adequate oxidation of gold is necessary. This oxidation is carried out in both 0.1 M NaOH and 0.1 M H2SO4 at oxidation potentials. When a GCE is used as working electrode, the oxidation steps are not necessary. Moreover, a cleaning step in KCN, which removes gold from electrode surface, is included. To obtain reproducibility in the analytical signal, the surface of the electrodes must be suitably pretreated; this electrodic pretreatment depends on the kind of electrode used as working electrode. Low detection limits (5.0×10?10 M) for short gold deposition times (10 min for CPE and 5 min for GCE) were achieved with this novel methodology. Finally, sodium aurothiomalate can be quantified using silver electrocatalytic deposition and GCE as working electrode. Good linear relationship between silver anodic stripping peak and aurothiomalate concentration was found from 5.0×10?10 M to 1.0×10?8 M.  相似文献   

7.
Mesoporous SiO2 of SBA-15 is reported to modify carbon paste electrodes for detecting epinephrine (EP). Carbon paste electrodes modified with synthesized SBA-15 show high sensitivity for voltammetric determination of EP, which is attributed to the strong adsorption ability of SBA-15 to EP and large surface area of the working electrode resulted from SBA-15 modification. The effects of pH value, amount of SBA-15 and scan rate were investigated. Under optimum conditions, the anodic peak current of EP was proportional to its concentration over the range from 1.0 × 10?6 to 6.0 × 10?5 mol L?1 and the limit of detection was 6.0 × 10?7 mol L?1. The results show mesoporous SiO2-modified carbon paste electrodes, particularly SBA-15-modificd electrodes, create new opportunities for sensitive, simple and suitable method in the electrochemical analysis of EP.  相似文献   

8.
In this work, the electrochemical determination of glutathione (GSH) using β‐cyclodextrin (β‐CD) modified carbon electrodes was carried out. Different methodologies were used to modify the electrodes. In the first part of this paper, we analyze and compare the ability of the electrodes to determine GSH using the different β‐CD‐modified electrodes and cyclic voltammetry. We found that the carbon paste electrode modified by potential sweeping was the best electrode for GSH determination; in addition, we found that an inclusion complex formed between β‐CD deposited on the electrode surface and GSH. The formation constant for this complex was 2498.54 M?1 at 25 °C. Furthermore, we have also calculated thermodynamic parameters for the formation of the inclusion complex. In the second part of this paper, we analyze the effect of sweep rate and pH on the determination of GSH. The best results were obtained at a rate of 50 mV s?1 and a pH of 2.2. The β‐CD‐modified carbon paste electrode exhibits a linear response in a concentration range of 20 to 157 µM with a sensitivity of 1083.65 µA mM?1cm?2 and a detection limit of 3.92 µM. Finally, the electrode was used to determine the GSH concentration in Eichhornia crassipes root extract, and the concentration determination accuracy was validated by a well‐known spectroscopic method.  相似文献   

9.
A new chemically modified carbon paste electrode is fabricated to determine lead ion concentration in its trace level in aqueous media with differential pulse voltammetry (DPV). The best performance is obtained by the carbon paste electrode composition including 20% of dithiodibezoic acid (DDA), 80% of high purity graphite powder and 60?µL of colloidal gold nanoparticle (AuNP) solution. The proposed electrode has a wide linear calibration response from 1?×?10?9 to 6?×?10?5 M with a detection limit of 6.6?×?10?10?M, at pH 3.5. Seven replicate determination of 5?×?10?8?M of lead ion concentration gives a relative standard deviation of 3.33%. The modified sensor is applied to determine lead contents in some environmental and biological Samples with satisfactory results.  相似文献   

10.
A new environmentally friendly Au nanoparticles (Au NPs) synthesis in glycerol by using ultraviolet irradiation and without extra‐added stabilizers is described. The synthesis proposed in this work may impact on the non‐polluting production of noble nanoparticles with simple chemicals normally found in standard laboratories. These Au NPs were used to modify a carbon paste electrode (CPE) without having to separate them from the reaction medium. This green electrode was used as an electrochemical sensor for the nitrite detection in water. At the optimum conditions the green sensor presented a linear response in the 2.0×10?7–1.5×10?5 M concentration range, a good detection sensitivity (0.268 A L mol?1), and a low detection limit of 2.0×10?7 M of nitrite. The proposed modified green CPE was used to determine nitrite in tap water samples.  相似文献   

11.
《Analytical letters》2012,45(15):2929-2948
Abstract

This report describes the construction and characterization of an oxalate-sensing electrode. The electrode is based on the incorporation of ground beet stem into the graphite paste of a graphite paste electrode. The hydrogen peroxide generated by enzymatic degradation of oxalate is monitored at a working voltage of 0.900 V vs SCE. All measurements were conducted in a succinic acid/EDTA buffer at pH 4.00. Under these conditions, the electrodes exhibit reproducible responses to oxalate. The lower limit of oxalate detection was less than 1.03 × 10?4 M. The time to achieve a steady state response after exposure to a step change in oxalate concentration in solution is less than one minute. The magnitude of response to oxalate over the oxalate concentrations studied varies among several electrode tested as does the degree of linearity of response. An electrode studied still exhibited analytically useful responses to oxalate on the 15th day of its use. The beet stem-based electrodes display little response to glycolic acid, glucose, DL-valine, or pyruvate.  相似文献   

12.
A modified carbon paste electrode was prepared by incorporating the TiO2 nanoparticles in the carbon paste matrix. The electrochemical behavior of gallic acid (GA) is investigated on the surface of the electrode using cyclic voltammetry and differential pulse voltammetry. The surface morphology of the prepared electrode was characterized using the scanning electron microscopy. The results indicate that the electrochemical response of GA is improved significantly at the modified electrode compared with the unmodified electrode. Furthermore, the capabilities of electron transfer on these two electrodes were also investigated by electrochemical impedance spectroscopy. Under the optimized condition, a linear dynamic range of 2.5?×?10?6 to 1.5?×?10?4?mol?L?1 with detection limit of 9.4?×?10?7?mol?L?1 for GA is obtained in buffered solutions with pH 1.7. Finally, the proposed modified electrode was successfully used in real sample analysis.  相似文献   

13.
Stability constant for mercury binding by commercial and natural humic acids (HA) were determined using a new potentiometric mercury(II) sensor based on dithiosalicylic acid modified carbon paste electrode. The sensor present a high selective and sensitive response to mercury(II) ions, and a low detection limit of 1.8×10?8 M. The potentiometric titrations curves of humic acids against mercury(II) ions were modeled. For 1.00×10?7 to 3.00×10?4 M mercury(II) ion concentration levels the results are consistent with the presence of two different binding sites in the humic acid macromolecule. The strongest binding sites (log K1 ranging from 10.1 to 6.8) are probably due to interaction with carboxylic acid and amine groups in the molecule, whereas weakest binding sites (log K2 ranging from 8.8 to 4.5) can be associated to phenolic groups.  相似文献   

14.
《Electroanalysis》2005,17(8):685-693
Carbon paste electrodes were modified by mixing appropriate amounts of the monomers o‐phenylendiamine, p‐phenylendiamine and m‐phenylendiamine (o‐PD, p‐PD and m‐PD) into a graphite powder‐paraffin oil matrix. The electropolymerization of the incorporated phenylendiamine was then carried out in a carbon paste electrode in acidic medium by cyclic voltammetry between ?0.30 V and +0.90 or under constant potential. The modified carbon paste electrodes (MCPEs) obtained by this electropolymerization method were found to be useful for trace determination of Pb2+ in aqueous solutions. Lead(II) was first preconcentrated on the modified electrodes by complexation with the modifier, and the electrode was then transferred to an electrochemical cell. The best results in terms of sensitivity and detection limit were obtained with poly p‐phenylenediamine (poly (p‐PD)). For a 10‐min preconcentration time, the calibration plot was linear from 5×10?8 mol L?1 to 10?5 mol L?1, with r2=0.999 and relative standard deviation equal to 5%. However, the lowest lead concentration that could be detected was 10?9 mol L?1. Interference from metal ions like Cd(II), Hg(II), Zn(II), Fe(II) and Cu(II) was also studied.  相似文献   

15.
The application of carbon paste and glassy carbon electrodes in the analysis of oxalic acid was investigated by comparing the characteristics of cyclic voltammograms of oxalic acid obtained in various supporting electrolytes (acetate, borate, citrate, phosphate, etc.). When a semi-micro carbon paste electrode (area 0.49 cm2) was used, the oxalic acid was oxidized at +1.0 to +1.2 V vs Ag|AgCl yielding current in the μA range (scan rate 50 mV/s) for oxalic acid concentration of approximately 10?4M. Oxalic acid oxidation was observed under both acidic and alkaline conditions. The presence of chloride ions or oxygen did not have any deleterious effect on the electrode response. The peak current was reproducible for repeated scans obtained with the same electrode after brief stirring. The glassy carbon electrode was found to be less suitable for oxalic acid oxidation studies because the peaks in the voltammograms were poorly defined and the current response was markedly reduced. These investigations suggest that carbon paste electrodes are sensitive and stable for oxalic acid oxidation studies. A plot of the peak currents obtained with carbon paste electrode for different concentrations of oxalic acid between 1×10?4M to 1×10?3M was linear and reproducible. It is suggested that a flow through carbon paste electrode coupled to a chromatographic column can be used in the development of a sensitive method for oxalic acid analysis in biological samples.  相似文献   

16.
《Analytical letters》2012,45(10):1904-1922
Abstract

In this study, a new amperometric carbon paste enzyme electrode for determination of ethanol was developed. The carbon paste was prepared by mixing alcohol dehydrogenase, its coenzyme nicotinamide adenine dinucleotide (oxidized form, NAD+), poly(vinylferrocene) (PVF) that was used as a mediator, graphite powder and paraffin oil, then the paste was placed into cavity of a glass electrode body. Determination of ethanol was performed by oxidation of nicotinamide adenine dinucleotide (reduced form, NADH) generated enzymatically at +0.7 V. The effects of enzyme, coenzyme and PVF amounts; pH; buffer concentration and temperature were investigated. The linear working range of the enzyme electrode was 4.0×10?4–4.5×10?3 M, determination limit was 3.9×10?4 M and response time was 50 s. The optimum pH, buffer concentration, temperature, and amounts of enzyme, NAD+ and PVF for enzyme electrode were found to be 8.5, 0.10 M, 37°C, 2.0, 6.0, and 12.0 mg, respectively. The storage stability of enzyme electrode at +4°C was 7 days. Enzyme electrode was used for determination of ethanol in two different wine samples and results were in good agreement with those obtained by gas chromatography.  相似文献   

17.
《Analytical letters》2012,45(1-2):193-203
Abstract

The electrochemical oxidative behavior of cysteine and several disulfides, such as cystine, lipoic acid and disulfiram, have been investigated using a carbon past (EPC) and a modified carbon paste (EPCM) electrode. The study has permitted the differentiation of the oxidative behavior of the thiol and of the disulfides. Modification of the carbon paste, by incorporating cobalt(II) phtalocyanine, offers interesting properties due to the electrocatalytic capability of the electrode. Using these types of electrodes the different molecules have been quantitatively determined at concentration as low as 2.10?7 M.  相似文献   

18.
《Analytical letters》2012,45(2):369-386
Abstract

Three kinds of transition metal chelates of unsymmetrical tetradentate Schiff base, o‐hydroxybenzophenone‐1,2‐diaminobenzene‐pyrrole‐2‐carbaldehyde(H2L), were synthesized to prepare anion‐selective electrodes and their anion response characteristics were investigated. The results show that the performances of the electrodes are considerably influenced by the nature of the central metals. The proposed electrode with the Cu(II)‐chelate and cationic additive demonstrated an anti‐Hofmeister selectivity sequence with a good selectivity towards thiocyanate in the following order: Thiocyanate>iodide>salicylate>perchlorate>bromide>nitrite>chloride>acetate>fluoride>nitrate>sulfite>sulfate. The electrode had an excellent linear response to thiocyanate from 3.4×10?7 to 1.0×10?1 M in phosphate buffer solution at pH 5.0 with a slope of ?58.7 mV per decade, a detection limit of 1.6×10?7 M, and a fast response time within 5 s over the entire concentration series. Spectroscopic techniques and AC impedance were used to investigate the response mechanism to thiocyanate of the membrane doped with Cu(II)‐chelate. The preliminary application of the electrode for determination of thiocyanate in wastewater and urine samples is reported.  相似文献   

19.
A new dipyridyl‐functionalized silica gel (DPSG) was synthesized. The potentiometric response of silver ion was investigated at a carbon paste electrode chemically modified with functionalized nanoporous silica gel. The electrodes with a DPSG proportions of 10.1% (w/w), showed very stable potential. Calibration plots with Nernstian slopes for Ag+ were observed, 58.7 (±0.9) mV decade?1, over a wide linear range of concentration (5.0×10?7 to 1.0×10?1 M). The electrode has a detection limit of 1.0×10?7 M. The selectivity coefficients measured by the match potential method in acetate buffer, pH 5.5, were investigated. The electrode has fast response time, high performance, high sensitivity in wide cation activity ranges, and good long term stability (more than 6 months). The method was satisfactory and used to determine the concentration of silver ion in waste waters contaminated by this metal.  相似文献   

20.
《Electroanalysis》2006,18(11):1075-1080
The voltammetric behavior of uric acid (UA) has been studied at a multiwalled carbon nanotube‐ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6) paste coated glassy carbon electrode (MWNTs‐BMIMPF6/GC). It is found that UA can effectively accumulate at this electrode and cause a sensitive anodic peak at about 0.49 V (vs. SCE) in pH 4.0 phosphate buffer solutions. Experimental parameters influencing the response of the electrode, such as solution pH and accumulation time, are optimized for uric acid determination. Under the optimum conditions, the anodic peak current is linear to UA concentration in the range of 1.0×10?8 M to 1.0×10?6 M and 2.0×10?6 M to 2.0×10?5 M. The detection limit is 5.0×10?9 M for 180 s accumulation on open circuit. The electrode can be regenerated by successively cycling in a blank solution for about 3 min and exhibits good reproducibility. A 1.0×10?6 M UA solution is measured for eight times using the same electrode regenerated after every determination, and the relative standard deviation (RSD) of the peak current is 3.2%. As for different electrodes fabricated by the same way the RSD (i.e., the electrode to electrode deviation) is 4.2%(n=9). This method has been applied to the determination of UA in human urine samples, and the recoveries are 99%–100.6%. In addition, comparison is made between MWNTs‐BMIMPF6/GC and MWNTs/GC. Results show that the MWNTs‐BMIMPF6/GC exhibits higher sensitivity, selectivity and ratio of peak current to background current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号