首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳纳米管负载铂颗粒酶电极葡萄糖传感器   总被引:6,自引:0,他引:6  
朱玉奴  彭图治  李建平 《分析化学》2004,32(10):1299-1303
以碳纳米管负载纳米铂颗粒修饰玻碳电极 (CNT Pt/GCE)为基底 ,用明胶固定葡萄糖氧化酶(GOD) ,构建了电流型葡萄糖生物传感器 (GOD/CNT Pt/GCE)。在实验中 ,GOD/CNT Pt/GCE显示了良好的分析性能 ,与常规铂电极葡萄糖传感器 (GOD/Pt)相比较 ,测定葡萄糖的检出限从 6 .7× 10 -3 mol/L下降到8.3× 10 -4mol/L ;工作电位从 0 .6 5V下降至 0 .4 5V ;响应时间从 30s下降至 5s左右。实验结果表明 ,具有高度电催化活性的CNT Pt/GCE可作为酶传感器的一种新型基体电极。  相似文献   

2.
《Analytical letters》2012,45(11):2116-2127
Abstract

In the present paper the ultrafine and highly dispersed platinum nanoparticles (average size 3 nm) were used for the construction of a glucose biosensor in a simple method. An excellent response to glucose has been obtained with a high sensitivity (137.7 µA mM?1 cm?2) and fast response time (5 s). The biosensor showed a detection limit of 5 µM (at the ratio of signal to noise, S/N=3) and a linear range form 0.2 to 3.2 mM with a correlation coefficient r=0.999. The apparent Michaelis–Menten constant (k m) and the maximum current were estimated to be 9.36 and 1.507 mA mM?1 cm?2, respectively. In addition, effects of pH value, applied potential and the interferents on the amperometric response of the sensor were investigated and discussed.  相似文献   

3.
A novel type of united glucose oxidase (GOD) electrode was designed. Glucose oxidase and ferrocene (Fc), which was a mediator, were added into the composite electrode that was constructed by graphite powder, acetylene black, and epoxy resin. These three materials in composite electrode kept constant proportion in weight. And the optimum amounts of GOD and Fc among united enzyme electrode were 5% and 2%, respectively. The glucose was detected linearly in the concentration range 0.01–9.0 mM with a 20-s steady-state response time and 36 nA/mM of the sensitivity at 0.15 V applied potential. And electrode fouling problem and the response current from the interferents were avoided. The response current of the united GOD electrode had no obvious deterioration within 80 days when stored at 4°C in a refrigerator. The detecting results of human serum by the united GOD electrode had good consistency with that by standard enzyme method. The maximum deviation between these two detecting values was 5%. It might be used for detecting the blood sugar in clinical assay.  相似文献   

4.
Carbon nanotubes used for constructing biosensor was described for the first time. Single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups were used to immobilize glucose oxidase forming a glucose biosensor. The biosensor response can be determined by amperometric method at a low applied potential (0.40V).  相似文献   

5.
纳米铜颗粒-酶-复合功能敏感膜生物传感器   总被引:10,自引:0,他引:10  
任湘菱  唐芳琼 《催化学报》2000,21(5):455-458
用水合联肼作还原剂研制成亲水纳米铜颗粒,用琥珀酸二异酯磺酸钠/丙三醇/正庚烷反胶束体系合成出憎水纳米铜颗粒,并通过透射电镜和紫外光谱考察了制得的纳米颗粒样品,用憎水纳米铜颗粒及亲水纳米铜颗粒与聚 烯醇缩丁醛构成复合固酶膜基质,用溶胶-凝胶法固定葡萄糖氧化酶,构建葡萄糖生物传感器,实验结果表明,纳米铜颗粒可大幅度提高固定化酶的催化活性,响应电流从相应浓度的几十纳安增强到几千纳安,从理论和实验上证明了  相似文献   

6.
超细银-金复合颗粒增强酶生物传感器的研究   总被引:28,自引:1,他引:28  
任湘菱  唐芳琼 《化学学报》2002,60(3):393-397
用琥珀酸二异辛酯磺酸钠/环已烷反胶束体系合成憎水纳米银-金复合颗粒, 并用此纳米银-金颗粒与聚乙烯醇缩丁醛构成复合固酶模基质,用溶胶-凝胶法固 定葡萄糖氧化酶,构建葡萄糖生物传感器。实验表明,纳米憎水银-金颗粒可以大 幅度提高固定化酶的催化活性,响应电流从相应浓度的几十纳安增强几万纳安。探 讨了纳米颗粒效应在固定化酶中所起的作用,为纳米颗粒在生物传感器领域中的应 用提供了可参考的实验和理论依据。  相似文献   

7.
8.
《Analytical letters》2012,45(11):2039-2053
Abstract

Biphenol (4,4′-dihydroxy-biphenyl) was found to be an electron transfer mediator for glucose oxidase (GOD) of Aspergillus niger. At a glassy carbon electrode, a 1.44×10-4 M solution of biphenol in phosphate-buffered saline (PBS) at pH 7.4 gives an quasi-reversible, one-electron, pH-sensitive couple at 255mV (relative to the standard calomel electrode). The apparent second-order rate constant for electron transfer from reduced GOD to oxidized biphenol was determined to be 3×105 M-1 s-1. When biphenol and GOD are cophysiadsorbed on a graphite electrode immersed in PBS and held at 400mV, a glucose-dependent current response is noted. In addition to the predominant quasi-reversible biphenol redox couple, repetitive cyclic voltammetry at a graphite electrode gave rise to a polybiphenol polymer; this is most marked at a pH above the biphenol pKa of about 9.5. At pH 7.4, the polymerization is less significant. Polybiphenol formed either side of the pKa remains electrochemically active (E°app. = 245mV) but no longer mediates GOD.  相似文献   

9.
基于纳米铂黑修饰的快速检测用乳酸生物传感器研究   总被引:2,自引:0,他引:2  
制备了一种可用于运动员血清样品乳酸快速检测的L-乳酸传感器.这种便携式平面电化学生物传感器采用金薄膜两电极系统;先后修饰纳米铂黑粒子层和铁氰化钾媒介体.铂黑纳米粒子沉积于金电极表面以提高传感器的灵敏度和稳定性,然后将乳酸氧化酶(LOD, E.C.1.1.3.2)和相关试剂固定在工作电极表面,铁氰化钾作为媒介体用以提高电极表面电子传递能力,并将工作电压降低为0.2 V.通过优化铂黑颗粒的沉积、乳酸氧化酶的浓度、铁氰化钾的浓度、添加剂的成分和浓度等条件,将传感器的检测范围扩展至1~20 mmol/L乳酸,检测灵敏度提高到1.43 μA·L/mmol,检测时间为50 s.生物传感器的批间r为0.0549;生物传感器经室温储存1年后仍可保持90%的活性.这种传感器成功地用于无稀释乳酸血清样品的快速检测,结合便携式检测仪(YT 2005-1 乳酸测试仪)将在快速诊断领域具有很好的应用前景.  相似文献   

10.
Monomeric sarcosine oxidase (mSOx) fusion with the silaffin peptide, R5, designed previously for easy protein production in low resource areas, was used in a biosilification process to form an enzyme layer electrode biosensor. mSOx is a low activity enzyme (10–20 U/mg) requiring high amounts of enzyme to obtain an amperometric biosensor signal, in the clinically useful range <1 mM sarcosine, especially since the Km is >10 mM. An amperometric biosensor model was fitted to experimental data to investigate dynamic range. mSOx constructs were designed with 6H (6×histidine) and R5 (silaffin) peptide tags and compared with native mSOx. Glutaraldehyde (GA) cross‐linked proteins retained ~5 % activity for mSOx and mSOx‐6H and only 0.5 % for mSOx‐R5. In contrast R5 catalysed biosilification on (3‐mercaptopropyl) trimethoxysilane (MPTMS) and tetramethyl orthosilicate (TMOS) particles created a ‘self‐immobilisation’ matrix retaining 40 % and 76 % activity respectively. The TMOS matrix produced a thick layer (>500 μm) on a glassy carbon electrode with a mediated current due to sarcosine in the clinical range for sarcosinemia (0–1 mM). The mSOx‐R5 fusion protein was also used to catalyse biosilification in the presence of creatinase and creatininase, entrapping all three enzymes. A mediated GC enzyme linked current was obtained with dynamic range available for creatinine determination of 0.1–2 mM for an enzyme layer ~800 nm.  相似文献   

11.
张晓华  王氢 《分析化学》1995,23(3):336-339
用生姜粉末组织作生物催化材料与氧电极结合制姜粉组织过氧化氢传感器,5.0×10^-5-2.0×10^-3mol/L范围内响应信号与过氧化氢浓度成正比,并与新鲜生姜组织电极和过氧化氢酶电极作对比,结果表明姜粉组织电极性能优良,且酶源容易获得和保存。  相似文献   

12.
将纳米金胶(AuNPs)和羟基磷灰石(HAp)按一定比例混合制备了新型复合膜用于葡萄糖氧化酶(GOD)的固定,构建了高灵敏的葡萄糖传感器。由于纳米金胶的存在,葡萄糖氧化酶的直接电化学性质得以增强,在去除氧气的PBS(pH 7.0)介质中,固定在复合膜内的GOD表现出一对良好的氧化还原峰。在饱和氧气条件下,当加入一定量的葡萄糖时,由于GOD催化葡萄糖氧化消耗溶液中的溶解氧,-0.8 V处溶解氧的还原峰电流降低,且峰电流降低的量与葡萄糖浓度在0.02~1.62 mmol/L范围内呈线性相关,检出限为5.0μmol/L,检测灵敏度达9.91 mA.mol-1.L,可实现对葡萄糖的快速检测。  相似文献   

13.
《Electroanalysis》2017,29(7):1741-1748
The determination of lead ions by inhibition of choline oxidase enzyme has been evaluated for the first time using an amperometric choline biosensor. Choline oxidase (ChOx) was immobilized on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT) through cross‐linking with glutaraldehyde. In the presence of ChOx, choline was enzymatically oxidized into betaine at –0.3 V versus Ag/AgCl reference electrode, lead ion inhibition of enzyme activity causing a decrease in the choline oxidation current. The experimental conditions were optimised regarding applied potential, buffer pH, enzyme and substrate concentration and incubation time. Under the best conditions for measurement of the lowest concentrations of lead ions, the ChOx/MWCNT/GCE gave a linear response from 0.1 to 1.0 nM Pb2+ and a detection limit of 0.04 nM. The inhibition of ChOx by lead ions was also studied by electrochemical impedance spectroscopy, but had a narrower linear response range and low sensitivity. The inhibition biosensor exhibited high selectivity towards lead ions and was successfully applied to their determination in tap water samples.  相似文献   

14.
《Analytical letters》2012,45(7):1069-1081
Abstract

Glutaminase and glutamate oxidase were immobillzed into a gelatin support fixed on a pO2 sensor. The overall activity (02 consumption) was correlated to glutamine concentrations range from 0.2 to 2mM. The sample oxygen content dependence of the signal was minimized by the support properties. Measuring time for each sample was 2 minutes including response data treatment and rinsing steps. On repeated use, the electrode signal for 0.5mM was stable for 300 assays at least. This technique has been applied in different mammalian cell cultures.  相似文献   

15.
A novel glucose biosensor has been fabricated and employed as the amperometric detector of a capillary electrophoresis (CE) system. (±)-1-Ferrocenylethylamine and chitosan were successively modified on a 500-µm diameter disc platinum electrode by dip-coating. The modified electrode was subsequently immersed in glucose oxidase (GOx) solution to entrap the enzyme in the chitosan membrane. The primary amino groups of 1-ferrocenylethylamine, GOx, and chitosan were cross-linked by glutaraldehyde to obtain a biosensing membrane so as to reduce leaching of 1-ferrocenylethylamine and GOx. The electrochemical behavior of the target biosensor was investigated. It was demonstrated that the investigated biosensor features fast response, high stability, long lifetime, and ideal compatibility with the CE system. When CE was employed to introduce a glucose plug into the surface of the biosensor, the current response was linear to the glucose concentration in the range of 0.0025 to 2.5 mM with a detection limit of 1.2 µM (S/N = 3) at a working potential of +0.6 V (vs. SCE). The CE-biosensor system was applied to the determination of the glucose level in human serum. The results were satisfactory and in good agreement with the hospital assay results.  相似文献   

16.
《Analytical letters》2012,45(7):1143-1157
Abstract

A potentially implantable glucose biosensor for continuous monitoring of glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and Glucose Oxidase immobilized on carbon powder held in a form of a liquid suspension. The enzyme material can be replaced (the sensor recharged) without sensor disassembly. Glucose diffusion membranes from polycarbonate (PC) and from polytetrafluorethylene (PTFE) coated with silastic are used.

Sensors were evaluated continuously operating in phosphate buffer solution and in undiluted blood plasma at body temperature. Calibration curves of the sensors were periodically obtained. The sensors show stable performance during at least 1200 hours of operation without refilling of the enzyme. The PTFE membrane demonstrates high mechanical stability and is little effected by long-term operation in undiluted blood plasma.  相似文献   

17.
《Analytical letters》2012,45(14):2639-2645
Abstract

The glucose concentration in diluted whole blood has been measured, using a miniaturized thermal biosensor based on the enzyme thermistor principle. The biosensor is a small flow injection system. A sample volume of 20μl is injected into a flow of 50μl/min. The heat produced when the sample passes the enzyme column is measured with a thermistor connected to a Wheatstone bridge. The enzyme column contains glucose oxidase and catalase co-immobilized on a solid support material. Samples of whole blood usually cause problems in flow-systems. The blood cells tend to block the enzyme column and the back pressure increases. We have tested a superporous agarose material as enzyme support material using tenfold diluted samples of whole human blood. The blood was collected from the finger-tip and diluted with buffer containing an anticoagulant and sodium fluoride. The number of samples possible to inject and the accuracy compared to the Boehringer Mannheim Reflolux have been determined. At least 100 ten-fold diluted blood samples could be injected on a micro-column of superporous agarose. The obtained glucose concentration correlated well with the one obtained with the reference instrument.  相似文献   

18.
姚慧  李楠  徐景忠  朱俊杰 《中国化学》2005,23(3):275-279
本文选用生物相容性好的壳聚糖作为基体材料,使其与戊二醛交联成网状结构包埋葡萄糖氧化酶制成电化学传感器。这种壳聚糖膜不仅可以减小葡萄糖氧化酶的流失,而且能为酶提供了适宜的微环境。用红外光谱、紫外光谱及透射电镜对膜的形态和性质进行了表征。实验结果表明该传感器具有很快的响应速度,很好的稳定性和重现性,能选择性地催化葡萄糖并测定其浓度。该传感器的制备方法简单,成本低,于冰箱中放置两周信号保持在90%以上,对葡萄糖测量的线性范围为1×10-5 - 3.4×10-3mol•L-1,当信噪比为3:1时检测限为5×10-6mol•L-1。  相似文献   

19.
《Analytical letters》2012,45(15):2871-2882
Abstract

Application of polyaniline semiconductor films to potentiometric biosensor development provides certain advantages comparing with the known systems. Using self-doped polyaniline instead of common polymer as pH transducer the stable potentiometric response of 70 mV/pH was obtained. Taking as an example glucose biosensor we showed that polyaniline based electrode possessed three-four fold increased potential shift than glucose-sensitive field-effect transistor did. One can increase the sensitivity of potentiometric biosensor using thick ion-exchange membranes (in our case Nafion) in order to concentrate product near electrode surface. Such sensor possessed higher response time.  相似文献   

20.
应用壳聚糖将葡萄糖氧化酶固定于鸡蛋膜上,结合氧电极制得葡萄糖传感器.实验表明,壳聚糖比戊二醛能更好地固定葡萄糖氧化酶,最佳条件为壳聚糖浓度0.3%、固定化酶量0.8 mg、 pH 7.0、缓冲溶液浓度300 mmol/L和温度25 ℃.本葡萄糖传感器的线性范围为0.016~1.10 mmol/L;检出限为8.0 μmol/L(S/N=3), 响应时间<60 s,有很好的稳定性,寿命>3个月.同一个传感器重复使用以及同方法制作的不同传感器之间都有很好的重现性,RSD分别为2.5%(n=10)和4.7%(n=4).实际样品中可能存在的烟酰胺、 VB6、 VB12、 VE、Ca2+、 Mg2+、 K+和Zn2+等对葡萄糖的测定不产生干扰.本传感器已成功地应用于市售饮料中葡萄糖含量的测定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号