首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
2,3-Dihydroxypyridine loaded (via –N=N–linker) Amberlite XAD-2 (AXAD-2-DHP) was prepared and characterized by elemental analyses, TGA and FT-IR spectra. It (1g packed in a column of 1cm diameter; surface area 135.5m2g–1) was found to be an effective solid phase sorbent for enriching Zn2+, Mn2+, Ni2+, Pb2+, Cd2+, Cu2+, Fe3+ and Co2+ at pH 3.5 to 7.0 using flow rates between 1.0–5.0mLmin–1. For desorption (recovery 97.0–99.8%) of the metal ions, 8 to 10mL of 2.0molL–1 HCl or 1.5molL–1 HNO3 at a flow rate of between 2.0 and 4.0mLmin–1 were found most suitable. The t1/2 (time for 50% sorption) is between 2 and 10min when a 50mL solution (containing a total amount of metal of 2mg) was equilibrated with 0.5g of resin. Sorption of all metal ions except Pb2+ follows the Langmuir model, whereas for Pb the data fits with the Freundlich model. The sorption capacity is between 60.7 (for Cd) and 406.7 (for Cu) µmolg–1. The resin can withstand an acid concentration of 6molL–1 and can be reused for thirty cycles of sorption–desorption. The preconcentration factor varies between 100 and 300. For Cd, Ni and Cu the sorption capacity of 2,3-dihydroxypyridine loaded cellulose is lower than that of the present resin. The tolerance limits of electrolytes, humic acid, complexing agents, Ca2+ and Mg2+ in the enrichment of all metal ions are reported. The limits of detection are 3.88, 5.37, 8.72, 13.88, 4.71, 1.24, 0.59 and 0.30µgL–1 for Zn2+, Mn2+, Ni2+, Pb2+, Cd2+, Cu2+, Fe3+ and Co2+, respectively. The calibration curves for flame AAS determination were linear in the ranges 0.018–1.0, 0.067–5.0, 0.2–5.0, 0.9–20, 0.028–2.0, 0.077–5.0, 0.19–10 and 0.1–3.5µgmL–1, respectively. All the eight metal ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples have been quantitatively enriched with Amberlite XAD-2-DHP and determined by flame atomic absorption spectrometry.  相似文献   

2.
《Analytical letters》2012,45(5):1009-1021
Abstract

Application of morpholine dithiocarbamate (MDTC) coated Amberlite XAD‐4, for preconcentration of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II) by solid phase extraction and determination by inductively coupled plasma (ICP) atomic emission spectrometry (AES) was studied. The optimum pH values for quantitative sorption of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II), and Mn(II) were 6.5–8.0, 7.0–8.5, 6.0–8.5, 6.5–8.5, 7.5–9.0, and 8.0–8.5, respectively. The metals were desorbed with 2 mol L?1. The t1/2 values for sorption of metal ions were 2.6, 2.9, 2.5, 2.6, 3.0, and 3.8 min respectively for Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II). The effect of diverse ions on the determination of the previously named metals was studied. Simultaneous enrichment of the six metals was accomplished, and the method was applied for use in the determination of trace metal ions in seawater samples.  相似文献   

3.
A procedure for preconcentration of Mn(Ⅱ), Fe(Ⅱ), Co(H), Cu(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ) based on retention of their complexes with 8-hydroxyquinoline (HQ) on Amberlite XAD-2000 resin in a column was proposed for the analysis of environmental samples by flame AAS. Various parameters such as pH, eluent type, volume, concentration, flow rate and volume of sample solution, and matrix interference effect on the retention of the metal ions were investigated. The optimum pHs for the retention of metal complexes in question were about 6 except for Mn^2+ for whose value is 8. The loading capacity of the adsorbent for these metals and their recoveries from the resin under the optimum conditions were in the range 6.82-9.26 mg·g^-1 and 95%-101%, respectively. The enrichment factor was calculated as 100 and the limit of detection was in the range 0.3-2.2 μg·L^-1 (n=20, blank+ 3s). The proposed enrichment method was applied to tap water, stream water and vegetable samples. The validation of the procedure was carried out by analysis of certified reference material and standard addition. The analytes were determined with a relative standard deviation lower than 6% in all samples.  相似文献   

4.
《Analytical letters》2012,45(14):2772-2782
Abstract

A simple and sensitive flow injection on line separation and preconcentration system coupled to hydride generation atomic fluorescence spectrometry (HG‐AFS) was developed for ultra‐trace bismuth determination in water and urine samples. The preconcentration of bismuth on a nylon fiber‐packed microcolumn was carried out based on the retention of bismuth complex with Bismuthiol I. A 15% (v/v) HCl was introduced to elute the retained analyte complex and merge with KBH4 solution for HG‐AFS detection. Under the optimal experimental conditions, an enhancement factor of 20 was obtained at a sample frequency of 24/h with a sample consumption of 13.0 ml. The limit of detection was 2.8 ng/l and the precision (RSD) for 11 replicate measurements of 0.1 µg/l Bi was 4.4%.  相似文献   

5.
《Analytical letters》2012,45(2):425-433
Abstract

A new kinetic method for determination of traces of manganese(II) based on its catalytic effect on the oxidation of 4‐hydroxycoumarine with KMnO4 at pH=1.35 and at a temperature of 25°C was proposed. The reaction was followed spectrophotometrically by measuring the decrease in the absorbance of the dye at 525 nm. The calibration graph is linear in the range 20–200 ng/cm3. The effects of certain foreign ions upon the reaction rate were determined for assessment by the selectivity of the method. The proposed method has been applied for determination of manganese(II) in river water samples with satisfactory results.  相似文献   

6.
《Analytical letters》2012,45(13):2217-2230
Abstract

(Acetylacetone)‐2‐thiol‐phenyleneimine (H2L) immobilized on an anion‐exchange resin (Dowex) was used for separation and removal of mercury from natural water samples and for preconcentration prior to its determination by cold vapor inductively coupled plasma atomic emission spectroscopy. The metal was eluted from the column using a solution of 10% thiourea in 0.1 M HCl. The modified resin is higly selective with an exchange capacity of 1.60 mmol g?1. Various parameters like pH, column flow rate, and desorbing agents are optimized. The proposed method has a linear calibration range of 15–1000 ng/ml Hg(II), with a relative standard deviation at the 15 ng/ml level of 3.5%. The precision of the method (evaluated as the relative standard deviation obtained after analyzing six series of five replicates) was ±4.2% at the 50 ng/ml level of Hg(II). The method has been used for routine determination of trace levels of mercury species in natural waters. The potential application of modified resin for the removal of mercury(II) from two natural water samples (top water and lake water) spiked with 50 ng/ml of mercury (II) was studied by ICP‐AES, and the results proved that excellent percent extraction of mercury(II) from both natural water samples was obtained by column method using modified resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号