首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electroanalytical method for the determination of morpholine, a corrosion inhibitor, was developed at a cathodically pretreated boron-doped diamond electrode (BDDE). The voltammetric response of morpholine at the BDDE in 0.1?mol L?1 KCl (pH 10) shows an irreversible oxidation process at approximately 1.3?V vs. Ag/AgCl in 3.0?mol L?1 KCl. Using cyclic voltammetry, the number of electrons involved in the morpholine electroxidation mechanism was found to be 1. The application of chronoamperometry showed that the apparent diffusion coefficient (D0) was 2.99?×?10?6 cm2 s?1. Using square wave voltammetry under the optimized conditions (frequency of 30.0?Hz, pulse amplitude of 100?mV and step potential of 20?mV at pH 10.0), the developed method provided limits of detection and quantification of 2.1 and 6.9?mg L?1, respectively, with a linear range from 5.0 to 100.0?mg L?1 (r?=?0.991). Intraday (n?=?10) and interday (two consecutive day) precision values assessed as the relative standard deviation for solutions containing 30.0, 60.0, and 90.0?mg L?1 of morpholine were from 0.41 to 5.86% and 0.92 to 3.19%, respectively. The feasibility of the method for the interference-free determination of morpholine was verified by the analysis of synthetic boiler water samples containing CaCO3, Na2SO3, Na3PO4, FeCl3, and humic acid as organic matter. In addition, hydrazine was added as a possible interfering compound because of its widespread use in corrosion inhibition. Recovery values from 90.9 to 109.4% were obtained in the synthetic boiler water, thereby attesting to the accuracy of the method.  相似文献   

2.
The electrochemical properties of methylisothiazolinone (MIT), the most widely used preservative, were investigated by cyclic (CV) and differential pulse voltammetry (DPV) to develop a new method for its determination. To our knowledge, this is the first demonstration of a voltammetric procedure for the determination of MIT on a boron-doped diamond electrode (BDDE) in a citrate–phosphate buffer (C-PB) environment. The anodic oxidation process of methylisothiazolinone, which is the basis of this method, proved to be diffusion-controlled and proceeded with an irreversible two-electron exchange. The radical cations, as unstable primary products, were converted in subsequent chemical reactions to sulfoxides and sulfones, and finally to more stable final products. Performed determinations were based on the DPV technique. A linear calibration curve was obtained in the concentration range from 0.7 to 18.7 mg L−1, with a correlation coefficient of 0.9999. The proposed procedure was accurate and precise, allowing the detection of MIT at a concentration level of 0.24 mg L−1. It successfully demonstrated its suitability for the determination of methylisothiazolinone in household products without the need for any separation steps. The proposed method can serve as an alternative to the prevailing chromatographic determinations of MIT in real samples.  相似文献   

3.
The electrochemical characteristics of multi-component phenolic pollutants, such as phenol (Ph), hydroquinone (HQ) and 4-nitrophenol (4-NP), were investigated on boron-doped diamond (BDD) film electrode by differential pulse voltammetry (DPV) technique. A simple and feasible platform was accordingly established for the direct and simultaneous determination of these three phenolic pollutants. Results showed that, Ph, HQ and 4-NP gave obvious oxidation peaks on BDD electrode at the potential of 1.24, 0.76 and 1.52 V, respectively. Each of them displayed good linear relationship between their oxidation peak currents and their corresponding concentrations in a rather wide range coexisting with one or two of the other phenolic pollutants. The detection limits of Ph, HQ and 4-NP were estimated to be as low as 1.82×10^-6, 1.67×10^-6 and 1.44×10^-6 mol·L^-1, respectively. Therefore, a promising direct and simultaneous electrochemical determination method of multi-component phenolic pollutants in wastewater samples was constructed successfully on BDD electrode with advantages being rapid, simple, convenient, sensitive, in situ and inexpensive.  相似文献   

4.
A bismuth‐film electrode (BiFE) ex situ electrochemically deposited onto a copper substrate has been presented for paraquat determination. The bismuth film was electrochemically deposited at an applied potential of ?0.18 V vs. Ag/AgCl (3.0 M KCl) for 200 s. The analytical curve was linear in the paraquat concentration range from 6.6×10?7 M to 4.8×10?5 M with a limit of detection of 9.3×10?8 M. The method presented satisfactory results at a confidence level of 95% and the performance was evaluated in water samples.  相似文献   

5.
《Analytical letters》2012,45(12):1958-1975
The electrooxidative behavior and determination of lercanidipine (LRC) were investigated in aqueous acetonitrile medium at a boron-doped diamond electrode using voltammetric techniques. The LRC in selected supporting electrolyte presents a well-defined anodic response at 0.944 V, studied by the proposed method. The linear response was obtained in the ranges of 4 × 10?6 to 2 × 10?4 mmol L?1 range in 0.5 mmol L?1 sulfuric acid supporting electrolyte and 1 × 10?5 to 8 × 10?5 mmol L?1 range in spiked serum sample for square wave voltammetric technique. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage form and in the biological sample, respectively.  相似文献   

6.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

7.
In this paper the electrochemical behavior of hemoglobin (Hb) immobilized on a pencil lead electrode (PLE) was investigated. Immobilization of Hb on the pencil lead electrode was performed by nonelectrochemical and electrochemical methods. In phosphate buffer solution with pH 7.0 Hb showed a pair of well‐defined and nearly reversible redox waves (the anodic and cathodic peak potentials are located at ?0.18 V and ?0.22 V, respectively). The dependence of the anodic peak potential (Epa) on the pH of the buffer solution indicated that the conversion of Hb? Fe(III)/Hb? Fe(II) is a one‐electron‐transfer reaction process coupled with one‐proton‐transfer. In addition the effect of scan rate on peak currents and peak separation potential was investigated and electrochemical parameters such as α and ks were calculated. In the second part of this work, the ability of the electrode for determination of Hb concentration was investigated. The results showed a linear dynamic range from 0.15 to 2 µM and a detection limit of 0.11 µM. The relative standard deviation is 4.1 % for 4 successive determinations of a 1 µM Hb solution.  相似文献   

8.
《Electroanalysis》2006,18(2):158-162
Optimum conditions have been found for voltammetric determination of mutagenic 5‐aminoquinoline, 6‐aminoquinoline and 3‐aminoquinoline by differential pulse voltammetry and adsorptive stripping differential pulse voltammetry on carbon paste electrode. The lowest limits of determination were found for adsorptive stripping differential pulse voltammetry in 0.1 mol dm?3 H3PO4 (5×10?7 mol dm?3 , 1×10?7 mol dm?3, and 1×10?7 mol dm?3 for 5‐aminoquinoline, 6‐aminoquinoline and 3‐aminoquinoline, respectively). The possibility to determine mixtures of 8‐aminoquinoline with 3‐aminoquinoline or 5‐aminoquinoline or 6‐aminoquinoline, and mixtures of 5‐aminoquinoline with 3‐aminoquinoline or 6‐aminoquinoline by differential pulse voltammetry was verified. Binary mixtures of 8‐aminoquinoline with 3‐aminoquinoline or 6‐aminoquinoline, and of 3‐aminoquinoline with 5‐aminoquinoline could be successfully analyzed.  相似文献   

9.
An electrochemical method for the simultaneous determination of benzene, toluene and xylenes (BTX) in water was developed using square‐wave voltammetry (SWV). The determination of BTX was carried out using a cathodically pre‐treated boron‐doped diamond electrode (BDD) using 0.1 mol L?1 H2SO4 as supporting electrolyte. In the SWV measurements using the BDD, the oxidation peak potentials of the total xylenes‐toluene and toluene‐benzene couples, present in ternary mixtures, display separations of about 100 and 200 mV, respectively. The attained detection limits for the simultaneous determination of benzene, toluene and total xylenes were 3.0×10?7, 8.0×10?7 and 9.1×10?7 mol L?1, respectively. The recovery values taken in ternary mixtures of benzene, toluene and total xylenes in aqueous solutions are 98.9 %, 99.2 % and 99.4 %, respectively.  相似文献   

10.
A cathodically pretreated boron‐doped diamond electrode was used for the simultaneous anodic determination of ascorbic acid (AA) and caffeine (CAF) by differential pulse voltammetry. Linear calibration curves (r=0.999) were obtained from 1.9×10?5 to 2.1×10?4 mol L?1 for AA and from 9.7×10?6 to 1.1×10?4 mol L?1 for CAF, with detection limits of 19 μmol L?1 and 7.0 μmol L?1, respectively. This method was successfully applied for the determination of AA and CAF in pharmaceutical formulations, with results equal to those obtained using a HPLC reference method.  相似文献   

11.
An effective electrochemical sensor was constructed using an unmodified boron-doped diamond electrode for determination of genistein by square-wave voltammetry. Cyclic voltammetric investigations of genistein with HClO4 solution indicated that irreversible behavior, adsorption-controlled and well-defined two oxidation peaks at about +0.92 (PA1) & +1.27 V (PA2). pH, as well as supporting electrolytes, are important in genistein oxidations. Quantification analyses of genistein were conducted using its two oxidation peaks. Using optimized experiments as well as instrumental conditions, the current response with genistein was proportionately linear in the concentrations range of 0.1 to 50.0 μg mL−1 (3.7×10−7−1.9×10−4 mol L−1), by the detection limit of 0.023 μg mL−1 (8.5×10−8 mol L−1) for PA1 and 0.028 μg mL−1 (1.1×10−7 mol L−1) for PA2 in 0.1 mol L−1 HClO4 solution (in the open circuit condition at 30 s accumulation time). Ultimately, the developed method was effectively applied to detect genistein in model human urine samples by using its second oxidation peak (PA2).  相似文献   

12.
采用微分脉冲阳极溶出伏安法, 研究了Ag+、Cu2+、Pb2+、Sn2+、Cd2+等多种共存金属离子在掺硼金刚石(BDD)表面双金属共沉积-共溶出电化学行为. 结果表明, 双金属在掺硼金刚石膜表面的共沉积-共溶出模型是由金属本身的析出电位, 金属之间的相互作用, 金属离子和溶液间的相互作用等多种因素决定的. 微分阳极溶出法的研究结果表明, 双金属在掺硼金刚石电极上的共沉积-共溶出过程表现出金属1溶出-金属2溶出、金属1溶出-析氢-金属2溶出、金属1溶出-金属合金溶出-金属2溶出、金属1溶出-析氢-金属2络合物形成-金属2溶出等四种模型.  相似文献   

13.
Electrochemical oxidation of azoxystrobin, a systemic fungicide commonly used in agriculture to protect a wide variety of crops, was investigated using cyclic voltammetry with a boron‐doped diamond electrode (BDDE) in aqueous buffer solutions. Two pH independent irreversible anodic current peaks controlled mostly by diffusion were observed in wide pH range (2 to 12) at potentials +1600 mV and +2150 mV vs. saturated silver‐silver chloride electrode. Mechanism of the electrochemical oxidation was proposed and supported with high performance liquid chromatography/mass spectrometry analysis of azoxystrobin solutions electrolyzed on carbon fiber brush electrode. The main product of the first two‐electron oxidation step was identified as methyl 2‐(2‐{[6‐(2‐cyanophenoxy)pyrimidin‐4‐yl]oxy}phenyl)‐2‐hydroxy‐3‐oxopropanoate. An analytical method for the determination of azoxystrobin in water samples and pesticide preparation by differential pulse voltammetry with BDDE was developed. The method provides a wide linear dynamic range (3.0×10?7 to 2.0×10?4 mol L?1) with limit of detection 8×10?8 mol L?1. Accuracy of the method was evaluated by the addition and recovery method with recoveries ranging from 96.0 to 105.8 %. Interference study proved sufficient selectivity of the developed voltammetric method for the azoxystrobin determination in presence of azole fungicides as well as pesticides used to prevent the same crops.  相似文献   

14.
N‐acetylcysteine (NAC) and gentamicin sulfate (GS) are biologically and pharmaceutically relevant thiol‐containing compounds. NAC is well known for its antioxidant properties, whereas GS is an aminoglycoside that is used as a broadband antibiotic. Both pharmaceuticals play a significant role in the treatment of bacterial infections by suppressing the formation of biofilms. According to the European Pharmacopeia protocol, GS is analyzed by high performance liquid chromatography (HPLC) using gold electrodes for electrochemical detection. Here, we report the electrochemical detection of these compounds at NH2‐terminated boron‐doped diamond electrodes, which show significantly reduced electrode passivation, an issue commonly known for gold electrodes. Cyclic voltammetry experiments performed for a period of 70 minutes showed that the peak current decreased only by 1.6 %/7.4 % for the two peak currents recorded for GS, and 6.6 % for the oxidation peak of NAC, whereas at gold electrodes a decrease in peak current of 14.2 % was observed for GS, and of 64 %/30 % for the two peak currents of NAC. For their quantitative determination, differential pulse voltammetry was performed in a concentration range of 2–49 µg/mL of NAC with a limit of detection (LOD) of 1.527 µg/mL, and a limit of quantification (LOQ) of 3.624 µg/mL, respectively. The quantification of GS in a concentration range of 0.2–50 µg/mL resulted in a LOD of 1.714 µg/mL, and a LOQ of 6.420 µg/mL, respectively.  相似文献   

15.
《Analytical letters》2012,45(15):2339-2363
Abstract

Electrodes based on amalgam materials were re-introduced in electroanalytical chemistry in the year 2000, partially as reaction to unsubstantiated public fears of liquid mercury. In this publication, the voltammetric behavior of 1-nitronaphthalene and 2-nitronaphthalene was investigated at a mercury meniscus-modified silver solid amalgam electrode. The reduction mechanism in mixed neutral buffer-methanol medium includes the four-electron reduction to hydroxylaminoderivative followed by a two-electron reduction to the amine in acidic medium, similarly to mercury electrodes. In alkaline media, both compounds show the splitting of the main four-electron reduction peak typical for mercury electrodes in two new ones, the first one corresponding to a one electron reduction of the nitroderivative to the nitro radical anion, which was confirmed by microcoulometry. Using optimized conditions (differential pulse voltammetry, Britton-Robinson buffer pH 7.0 – methanol (9:1) medium) the calibration dependences are linear in the range of 2·10?7 (4·10?7) to 1·10?4 mol L?1 for 1-nitronaphthalene (2-nitronaphthalene). After preconcentration of the analytes from drinking and river water samples using solid phase extraction the limit of determination was lowered to ~3·10?8 mol L?1.  相似文献   

16.
Barek J  Jandová K  Pecková K  Zima J 《Talanta》2007,74(3):421-426
Voltammetric behavior of 2-aminobiphenyl, 3-aminobiphenyl, and 4-aminobiphenyl at a boron-doped nanocrystalline diamond film electrode was investigated using cyclic voltammetry and differential pulse voltammetry. Optimum conditions have been found for the determination of those genotoxic substances by differential pulse voltammetry at the above given electrode in the concentration range of 2 × 10−7 to 1 × 10−5 mol/L.  相似文献   

17.
The present work describes the first electrochemical investigation and a simple, rapid and modification‐free electroanalytical methodology for quantification of hordenine (a potent phenylethylamine alkaloid) using a boron‐doped diamond electrode. At optimized square‐wave voltammetric parameters, the observed oxidation peak current in 0.1 M HClO4 at +1.33 V (vs. Ag/AgCl) increased linearly from 5.0 to 100 μg mL?1 (3.0×10?5–6.1×10?4 M), with detection limit of 1.3 μg mL?1 (7.8×10?6 M). The applicability of the developed method was tested with the determination of hordenine in the commercial dietary supplement formulations.  相似文献   

18.
This work reports the determination of 5 neonicotinoid pesticides (Clothianidin, Imidacloprid, Thiamethoxam, Nitenpyram and Dinotefuran) in water samples by cathodic differential pulse (DP) voltammetry at screen‐printed disposable sensors featuring a sputtered bismuth thick‐film working electrode, a Ag reference electrode and a carbon counter electrode. The performance of the bismuth thick‐film electrodes was compared to that of a home‐made bismuth thin‐film electrode and a bismuth‐bulk electrode. The electrodes were further characterized by electrochemical and optical techniques. The effect of the pH of the supporting electrolyte on the DP reduction currents of the 5 pesticides was studied. The limits of quantification (LOQs) in 4 water matrices (distilled water, tap water, mineral water and surface water) were in the range 0.76 to 2.10 mg L?1 but severe matrix effects were observed in the analysis of mineral and, especially, surface water samples. Using a solid‐phase extraction (SPE) procedure using Lichrolut EN cartridges and elution with methanol, the matrix effects were substantially reduced and the LOQs were in the range 9 to 17 µg L?1. The recoveries of surface water samples spiked with the 5 target neonicotinoids at two concentration levels (20 and 50 µg L?1) were in the range 89 to 109 % and the % relative standard deviations ranged from 4.3 to 7.2 %.  相似文献   

19.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

20.
The SAM nanoSe0/Vc/SeCys‐film modified Au electrode has been prepared to determine selenocystine and selenomethionine. The AFM and SEM showed the special three‐dimensional (3D) network structure of the sol‐gel films. The affinity between nanoparticles and biomolecules created special chemical characters analyzed by the XRD and fluorescence. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified films partly had resistance in the charge transduction of Fe(CN) , but the less electron‐transfer resistance. Differential pulse voltammetric (DPV) determination of selenoamino acids using SAM nanoSe0/Vc/SeCys‐film modified Au electrode was presented. In PBS (pH 7.0)+0.1 mol L?1 NaClO4 solution, selenoamino acids yielded a sensitive reduction peak at about +400±50 mV. The peak current had a linear relationship with the concentration of selenoamino acids in the range of 5.0×10?8–1.0×10?5 mol L?1, and a 3σ detection limit of selenoamino acids was 1.2×10?8 mol L?1. The relative standard deviation of DPV signals of 0.50×10?6 mol L?1 selenoamino acids was 3.8% (n=8) using the same electrode and was 4.4% (n=5) when using three modified electrodes prepared at different times. The content of selenoamino acids in the organo‐selenium powder were determined by DPV. The results showed 71.5 μg g?1 of SeCys and 65.1 μg g?1 of SeMet in the organo‐selenium powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号