首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of carbon paste electrode modified with subbituminous and bituminous coal is presented. The operability of the coal carbon paste electrode with respect to the working potential window attainable was tested in various electrolytes. Cyclic voltammetry of the reference redox system [Fe(CN)6]3?/4? was performed to evaluate electron transfer kinetics. Open‐circuit sorption of Cd(II), Pb(II), and Cu(II) with subsequent anodic stripping voltammetry was used to pilot coal sorption ability. The coal modified carbon paste electrode was also examined as a support for mercury film deposition and anodic stripping voltammetry of metals.  相似文献   

2.
《Analytical letters》2012,45(6):1235-1254
Abstract

A simple and reliable procedure simultaneously to determine seven trace and/or ultratrace toxic metals in a single sample of environmental plants has been presented. The procedure is based on the simultaneous determination of Cu, Pb and Cd by differential pulse anodic stripping voltammetry, of Zn and Mn by differential pulse voltammetry and of Ni and Co by differential pulse adsorption voltammetry at the hanging mercury drop electrode. The details of sampling, washing and drying of samples and the approach of digestion and preparation of samples for voltammetric determination have been investigated. The method has been applied to determination of the seven metals in grass and hucerne from different environments.  相似文献   

3.
The differential pulse single-sweep voltammetric technique with hanging mercury drop electrode was used for the determination of Cr(III). The determination was carried out in 0.2 mol/l sodium acetate as supporting electrolyte. The reduction peak of Cr(III) was recorded at –1.5 V vs. Ag/AgCl reference electrode. The relative standard deviation was 3% for Cr concentrations in the range of 0.4 mol/l. The determination of impurities (Cd, Cu, Pb and Zn) in fresh and overworked galvanic baths using anodic stripping voltammetry in the differential pulse mode is also described.  相似文献   

4.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

5.
《Analytical letters》2012,45(5):905-918
ABSTRACT

A new method is described for the determination of cobalt based on the square wave adsorptive stripping voltammetry of Co(II) complexed with hydroxynaphthol blue (HNB) at the static mercury drop electrode. Optimal conditions were found to be: preconcentration potential, -0.500V vs. Ag/AgCl (KCl 3M); preconcentration time, 30 s (with stirring); pulse height, 50 mV; frequency, 100 Hz; scan increment, 4 mV; step time, 0.010 s; supporting electrolyte, HEPES/HCl (0.1 M, pH 7.0-8.0) or triethanolamine/HCl (0.1 M, pH 7.6); concentration of hydroxynaphthol blue, 5.0 × 10?6 M. The response of the system was found to be linear in a range of Co(II) concentrations from 2.0 to 10.0 μg/L. The limit of detection was found to be 1.8 × 10?9 M with 2 minutes of preconcentration time. The effect of various potential interferences were also studied including a variety of cations, anions and organic surfactants. The interferences by Ni(II), and Cr(VI) may be eliminated by addition of EDTA or CDTA and the of Fe(III) and Ti(IV) by fluoride. The merits of the procedure were demonstrated in the analysis of certified and biological samples.  相似文献   

6.
《Electroanalysis》2005,17(21):1977-1984
An improved theoretical approach to Anodic Stripping Voltammetry with a Thin Mercury Film Rotating Disk Electrode for elucidating the nature of the interactions of Pb(II), Cd(II) and Zn(II) with humic substances in model solutions of Laurentian fulvic acid, and of Pb(II), Cd(II), Zn(II) and Cu(II) in freshwaters, is presented. Conditional stability constants of Pb(II), Cd(II) and Zn(II) complexes decreased with the ionic potential (z2/r) and increased with softness of the metal ion, indicating strong affinity of soft, polarizable donor ligands on humic substances for softer metal ions, resulting in an appreciable covalent character in electrostatic bonding between the metals and humic substances.  相似文献   

7.
《Electroanalysis》2017,29(12):2685-2688
Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn in alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH)4 and Zn(OH)42−. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of≤−1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r‐squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. These results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.  相似文献   

8.
《Analytical letters》2012,45(11):1969-1986
Abstract

There is a need to expand the range of working electrodes which can be us in analytical voltammetry.

In this work, the synthesis of a thio containing (poly) N-Ethyl Tyramine electrode is described. Cyclic voltammetry, SEM and EPMA were used to characterise the modified electrode.

The ability of this electrode to uptake copper, nickel, mercury or cobalt ions from solution was investigated. Detection limits of the order of 0.1 ppm were estimated using differential pulse voltammetry.  相似文献   

9.
《Analytical letters》2012,45(15):2965-2975
ABSTRACT

Albendazole is determined by differential-pulse adsorptive cathodic stripping voltammetry at a hanging mercury drop electrode using the reduction peak of its copper(II) complex at ?0.28V at an accumulation potential 0.0V vs. Ag/AgCl electrode. The optimum conditions of pH, accumulation potential and accumulation time were studied. The calibration graph for the determination of albendazole was linear in the range 3.0X10?8 - 9X10?7M with a relative standard deviation of 2.8%. The detection limit was 1.0X10?8M after 180s accumulation at 0.0V. The effect of common excipients and metal ions on the peak height of albendazole was studied. The presence of Cu2+ ions forms a stable complex with albendazole which is strongly adsorbed at the mercury electrode surface. The method was applied to the determination of the drug in commercially available dosage forms.  相似文献   

10.
《Analytical letters》2012,45(8):1411-1423
Abstract

The electrochemical behaviour of the bilirubin in many kinds of supporting electrolytes on a glassy carbon electrode (GCE) and a hanging mercury drop electrode (HMDE) was investigated by means of anodic or cathodic differential pulse voltammetry. The influences of different methods of pre-treatment of the glassy carbon electrode was also discussed. In Na2B4.O7-KH2PO4 buffer solution, the linear range was 2×10?9-1×10?9 mol/l and the detection limit was 3.3×10?9 mol/l by anodic differential pulse voltammetry at GCE. A linear relationship holds between the peak current and the concentration of bilirubin in a concentration range of 1×10?9-4×10?7 mol/l with good precision and accuracy, and the limit of detection was 2×10?10 mol/l, when cathodic differential pulse adsorption voltammetry at HMDE was used.  相似文献   

11.
An EDTA‐bonded conducting polymer modified electrode was prepared and characterized by FT‐IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1 μM to 10.0 μM for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5 nM to 20 nM for Cu(II), Hg(II), and Pb(II) after 10 min of preconcentration. The detection limits were determined to be 0.1 nM, 0.3 nM, 0.4 nM, 50.0 nM, 60.0 nM, 65.0 nM, 80.0 nM, and 90.0 nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution.  相似文献   

12.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

13.
Summary A new voltammetric procedure has been developed for the determination of toxic heavy metals in annual growth rings. The method is based on a wet digestion of minute quantities of wood material of 10–25 mg with an acid mixture of HNO3 and HClO4 in a quartz cup and the subsequent simultaneous determination of Cd, Pb, Cu and Zn by differential pulse anodic stripping voltammetry (DPASV) at the hanging mercury drop electrode (HMDE). The accuracy of the method has been proved by using electrothermal atomic absorption spectrometry as an independent procedure. The problems of the contamination by ubiquitous heavy metals during the wet digestion were investigated and their influence on the results was effectively diminished. Losses of the studied metals have not been observed. The high sensitivity of the method enables the determination of the toxic metals Pb and Cd in the analyte of the wet digestion with a relative standard deviation of less than 20% in the low level range 0.1–4 g/l.The potentialities of the method have been shown in the determination of Cd, Pb, Cu and Zn in cores of oak (Quercus petraea) from Königstein (Taunus, FRG). The high sensitivity made it possible to analyze individual growth rings and thus to avoid damages on trees using an excessive quantity of material. In two samples taken as example a distinct increase of the concentration of Cd and Pb during the last decade indicates metal pollution of the region by atmospheric precipitates.
Spurenbestimmung von Cd, Cu, Pb und Zn in Jahresringen mit Hilfe der Differentialpuls-ASV

Attached from the Institute of Chemistry, Universidad del Norte, Antofagasta, Chile. Taken in part from the Ph.D. Thesis, University in Bonn  相似文献   

14.
《Analytical letters》2012,45(10):1742-1750
Abstract

Proflavine binds with DNA in a complicated manner. This work involves the electrochemical study of this interaction using differential pulse voltammetry at a carbon paste electrode (CPE) and alternating current voltammetry at a hanging mercury drop electrode (HMDE). At the CPE the peak current intensity at 1.0 V (corresponding to the oxidation of the guanine residues) decreased by increasing the concentration of proflavine. At the HMDE, a decrease in the current intensity of the DNA peak at ? 1.2 V (corresponding to segmental desorption) was also observed by increasing the concentration of proflavine. These results confirmed, electrochemically, that proflavine intercalates within the DNA double helix and changes its conformation.  相似文献   

15.
Metallothioneins (MTs) are widely occurring, small, cysteine‐rich proteins, important for essential metal (Zn, Cu) homeostasis and transport and for heavy metal (Cd, Hg) detoxification. In buffered solutions of mammalian MT, voltammetry and potentiometric striping analysis (PSA) can distinguish different coordination of bound metals or follow their exchange, especially that of zinc and cadmium for copper, silver, and cobalt. The examples of different electrode applications as of hanging mercury drop electrode (HMDE), of silver solid amalgam (AgSAE) electrode, and of silica gel modified carbon paste electrode (SiO2‐CPE) are given.  相似文献   

16.
《Electroanalysis》2006,18(9):918-927
Uric acid (UA) sensor based on molecularly imprinted polymer‐modified hanging mercury drop electrode was developed for sensitive and selective analysis in aqueous and blood serum samples. The uric acid‐imprinted polymer was prepared from melamine and chloranil and coated directly onto the surface of a hanging mercury drop electrode, under charge‐transfer interactions at +0.4 V (vs. Ag/AgCl), in model 303A electrode system connected with a polarographic analyzer/stripping voltammeter (PAR model 264A). The binding event of uric acid was detected in the imprinted polymer layer through differential pulse, cathodic stripping voltammetry (DPCSV) at optimized operational conditions [accumulation potential +0.4 V (vs. Ag/AgCl), accumulation time 120 s, pH 7.0, scan rate 10 mV s?1, pulse amplitude 25 mV]. The limit of detection for UA was found to be 0.024 μg mL?1 (RSD=0.64%, S/N=3). Under the optimized operational conditions, the sensor was able to differentiate between uric acid and other closely structural‐related compounds and interfering substances. Ascorbic acid (AA), a major interferent in UA estimation, was not adsorbed on the surface of sensor electrode. The present sensor is, therefore, UA‐selective at all concentrations of AA present in human blood serum samples. The précised and accurate quantification of UA have been made in the dilute as well as concentrated regions varying within limits 0.1–4.0 and 9.8–137.0 μg mL?1, respectively.  相似文献   

17.
A highly sensitive and selective voltammetric procedure is described for the simultaneous determination of eleven elements (Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe) in water samples. Firstly, differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) is used for the direct simultaneous determination of Cd, Pb, Cu, Sb and Bi in 0.1 M HCl solution (pH = 1) containing 2 M NaCl. Then, differential pulse cathodic stripping voltammetry (DPCSV) is used for the determination of Se in the same solution. Zn is subsequently determined by DPASV after raising the pH of the same solution to pH 4. Next, the pH of the medium is raised to pH 8.5 by adding NH3/NH4Cl buffer solution for the determination of Mn by DPASV. Ni and Co are determined in the same solution by differential pulse adsorptive stripping voltammetry (DPAdSV) after adding DMG (1 × 10–4 M). Finally, 1 × 10–5 M 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is added to the solution for the determination of Fe by DPAdSV. The optimal conditions are described. Relative standard deviations and relative errors are calculated for the eleven elements at three different concentration levels. The lower detection limits for the investigated elements range from 1.11 × 10–10 to 1.05 × 10–9 M, depending on the element determined. The proposed analysis scheme was applied for the determination of these eleven elements in some ground water samples.  相似文献   

18.
《Electroanalysis》2005,17(2):105-112
The forensic analysis of lead in gunshot residues (GSR) sampled on the hands of potential shooters is rendered faster, simpler and less expensive by a new batch injection analysis (BIA) method, based on differential pulse anodic stripping voltammetry (DPASV). A simple “J” shaped adaptor was designed to direct the flux of the analyte injected with a micropipettor onto the hanging mercury drop electrode of any commercial electrode stand. Sampling methods for GSR were compared and lifting with adhesive tape was elected for field use. The tapes are glued on polyethylene screens and stored in capped vials. Sampling with multiple strips provides coarse mapping of the distribution of lead on the shooter's hands. After a dissolution/extraction step with chloroform/aqueous 0.10 mol L?1 HCl, 100 μL of the aqueous phase are injected during 25 s for accumulation of lead on the HMDE at ?0.60 V (vs. Ag/AgCl). A detection limit of 20 ng/mL of Pb(II), outreaching for GSR analysis, is reached without oxygen removal, at a frequency of 20 injections per hour. Results for sequences of shootings with a revolver and a pistol are presented.  相似文献   

19.
《Electroanalysis》2006,18(2):169-176
Constant current chronopotentiometric stripping analysis using adsorptive accumulation and negative stripping current (AdSCP) was applied for the study of behavior of rabbit liver Cd‐Zn and Zn metallothionein (Cd‐Zn‐MT, ZnMT) on hanging mercury drop electrode. Electrochemically inert or labile behavior of complexes can be distinguished with the application of high (1000 nA) or low (100 to 20 nA) current. Using high current, no influence of added Cd2+ or Zn2+ ions on the reduction of Cd(II) or Zn(II) complexed within MT molecule was observed, except of additions of Cd2+ to ZnMT, where bound Zn(II) was substituted by cadmium ions. With lowering of stripping current and increasing concentration of added Cd2+ or Zn2+ ions in solution progressive formation of reorganized complex with labile behavior is observed. Parallel measurement using DC voltammetry with different rates of polarization or differential pulse voltammetry were in agreement with AdSCP measurement. However, only chronopotentiometric method combines good sensitivity and signal separation at μM concentrations, inevitable in MT studies.  相似文献   

20.
《Analytical letters》2012,45(18):2938-2950
Abstract

A novel electrode modified with oligonucleotide and microporous gold was fabricated for the determination of mercury by differential pulse adsorptive stripping voltammetry (DPAdSV). Microporous gold was synthesized by electrochemical reduction using dynamic hydrogen bubble template. The oligonucleotide was immobilized on microporous gold by self-assembly. The prepared electrode exhibited an improved electrochemical response for mercury(II) ion because of the large surface area and excellent electron transfer capacity provided by microporous gold and the specific coordination between mercury ion and thymine bases in oligonucleotides. Under the optimal experiment conditions, the oligonucleotide functionalized microporous gold electrode had a linear relationship between the stripping current and mercury ion concentration in the range from 0.5 to 30?µg/L with a detection limit of 0.021?µg/L. Moreover, the prepared electrode exhibited good selectivity, reproducibility, repeatability and stability. Furthermore, the prepared electrode was applied to detect mercury in tap water with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号