首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Screen‐printed electrodes (SPEs) are cheap and disposable. But their application for heavy metal detection is limited due to the low sensitivity and poor selectivity. Here we report the ultrasensitive and simultaneous determination of Zn2+, Cd2+ and Pb2+ on a multiwalled carbon nanotubes and Nafion composite modified SPE with in situ plated bismuth film (MWCNTs/NA/Bi/SPE). The linear curves range from 0.5–100 µg L?1 for Zn2+ and 0.5–80 µg L?1 for Cd2+. Uniquely, the linear curve for Pb2+ ranges from 0.05–100 µg L?1 with a detection limit of 0.01 µg L?1. The practical application was verified in real samples with satisfactory results.  相似文献   

2.
We present a simplified approach for the trace screening of toxic heavy metals utilizing bismuth oxide screen printed electrodes. The use of bismuth oxide instead of toxic mercury films facilitates the reliable sensing of lead(II), cadmium(II) and zinc(II). A linear range over 5 to 150 μg L?1 with detection limits of 2.5 and 5 μg L?1 are readily observed for cadmium and lead in 0.1 M HCl, respectively. Conducting a simultaneous multi‐elemental voltammetric detection of zinc, cadmium and lead in a higher pH medium (0.1 M sodium acetate solution) exhibited a linear range between 10 and 150 μg L?1 with detection limits of 5, 10 and 30 μg L?1 for cadmium, lead and zinc respectively. The sensor is greatly simplified over those recently reported such as bismuth nanoparticle modified electrodes and bismuth film coated screen printed electrodes. The scope of applications of this sensor with the inherent advances in electroanalysis coupled with the negliable toxicity of bismuth is extensive allowing high throughput electroanalysis.  相似文献   

3.
《Analytical letters》2012,45(5):761-777
This article reviews the use of square wave anodic stripping voltammetry for the simultaneous determination of ecotoxic metals (Pb, Cd, Cu, and Zn) on a bismuth-film (BiFE) electrode. The BiFE was prepared in situ on a glassy-carbon electrode (GCE) from the 0.1 mol L?1 acetate buffer solution (pH 4.5) containing 200 µg L?1 of bismuth (III). The addition of hydrogen peroxide to the electroanalytical cell proved beneficial for the interference-free determination of Cu (II) together with zinc, lead, and cadmium, using the BiFE. The experimental variables were investigated and optimized with the view to apply this type of voltammetric sensor to real samples containing traces of these metals. The performance characteristics, such as reproducibility, decision limit (CCa), detection capability (CCβ), sensitivity, and accuracy indicated that the method holds promise for trace Cu2+, Pb2+, Cd2+, and Zn2+ levels by employment of Hg-free GCE with SWASV. CCa, and CCβ were calculated according to the Commission Decision of 12 August 2002 (2002/657/EC). Linearity was observed in the range 20–280 µg L?1 for zinc, 10–100 µg L?1 for lead, 10–80 µg L?1 for copper, and 5–50 µg L?1 for cadmium. Using the optimized conditions, the stripping performance of the BiFE was characterized by low limits of detection (LOD). Finally, the method was successfully applied in real as well as in certified reference water samples.  相似文献   

4.
Dispersive liquid–liquid microextraction (DLLME) was combined with flow injection inductively coupled plasma mass spectrometry for simultaneous determination of cadmium, lead and bismuth in water samples. The metal elements were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors for Cd, Pb and Bi are 460, 900 and 645 in 5 mL of a spiked water sample, respectively. The calibration graphs for the three metals are linear in the range of concentrations from <10 ng L?1 to 1,000 ng L?1. The detection limits are 0.5 ng L?1, 1.6 ng L?1 and 4.7 ng L?1, respectively. The relative standard deviations for ten replicate measurements of 50 ng L?1 cadmium, lead and bismuth are 2.6%, 6.7%, and 4.9%, respectively, and the relative recoveries in various water samples at a spiking level of 50 ng L?1 range from 83.6% to 107.0%.  相似文献   

5.
A multiwalled carbon nanotubes–sodium dodecyl benzene sulfonate (MWCNTs–NaDBS) modified stannum film electrode was employed for the determination of cadmium(II) and zinc(II). The Sn/MWCNTs‐NaDBS film electrode was prepared by applying MWCNTs–NaDBS suspension to the surface of the GCE, while the Sn film was plated in situ simultaneously with the target metal ions. Under optimal conditions, linear calibration curves were obtained in a range of 5.0 ?100.0 μg L?1 with detection limits of 0.9 μg L?1 for zinc(II) and 0.8 μg L?1 for cadmium(II), respectively. This film electrode was successfully applied to the determination of Zn(II) and Cd(II) in tap water sample.  相似文献   

6.
A study on the preparation and characterization of the potentiostatically prepared bismuth films (BiFs), in order to obtain satisfactory electroanalytical tool, is presented. BiFs formed on glassy carbon were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The dependence of the BiFs properties upon electrolytes composition and electrochemical parameters are discussed and diagnostic criteria that allow estimation of the BiF morphology are proposed. Analytical performance data of the formed BiF electrodes were obtained by their application to the determination of glutathione (GSH) and folic acid (FA) using square-wave cathodic stripping voltammetry. The dependence of the analytical performance of the formed BiFs on their specific surface areas, along with their different morphology, is discussed. Adequate method and parameters for the electrochemical formation of optimal BiF, in order to fulfill the analytical requirements, are proposed. The best analytical performance was obtained with films formed from acetic buffer solution spiked with EDTA, as a consequence of the improved surface coverage and most arranged homogenous structure of the film. This electrode displays a linear response range toward GSH with estimated detection limit of 0.005 μM and sensitivity of 3.28 μA μM?1 for linear range of 0.01 to 0.1 μM. Also, the utilization of the BiF electrode for the determination of FA was demonstrated by direct electroreduction of FA.  相似文献   

7.
Square wave anodic stripping voltammetry was used in simultaneous determinations of eco-toxic metals (Pb, Cd, Cu and Zn) on bismuth film electrodes. The electrodes were prepared in situ on a glassy-carbon electrode (GCE) from 0.1 M acetate buffer (pH 4.5) containing 200 μg L?1 of bismuth (III), as well ex situ on electrochemically oxidized graphitized polyacrylonitrile carbon fibres from 200 mg L?1 Bi(NO3)3 in 1% HNO3 (aqueous) solution. Preparation of a Bi-modified carbon fibre electrode (CFE) was by cation exchange of Bi+3 ions for H+ of the acidic surface groups of the electro-oxidized carbon fibres, followed by electrochemical reduction to Bi0. For the Bi-GCE the linear range was 20–280 μg L?1 for zinc, 10–100 μg L?1 for lead, 10–80 μg L?1 for copper, and 5–50 μg L?1 for cadmium. For the Bi-CFE it was 20–160 μg L?1 for zinc, 10–100 μg L?1 for lead, 10–100 μg L?1 for copper, and 2–120 μg L?1 for cadmium. For both kinds of bismuth modified carbon electrodes, low limits of detection and satisfactory precision were achieved. The method was successfully applied to certified reference materials of biological (bovine liver) and environmental (mussel tissue) importance.   相似文献   

8.
Mercury-based screen-printed electrodes (SPE) combined with square-wave anodic stripping voltammetry (SWASV) techniques for the analysis of copper, cadmium, lead, and zinc in different water samples have been applied. The detection system has been implemented in a flow cell and different experimental conditions have been tested in view of its application for in-situ monitoring. In particular, an acetate buffer together with a low chloride concentration (0.025?M NaCl) provided best performance and reproducible results. Additionally, the flow system was validated for the first time in terms of limits of detection, linearity, repeatability and recovery. Limits of detection of 2.8?µg?L?1, 4.1?µg?L?1, and 7.5?µg?L?1 for cadmium, lead and copper respectively and repeatabilities lower than 10% (as RSD) were found. Good recoveries have been obtained for the three cations and in particular for copper, even in the presence of zinc. Finally, the method has shown its efficiency for the rapid screening of lead, cadmium and copper contained in both natural waters and wastewater samples.  相似文献   

9.
《Electroanalysis》2006,18(2):177-185
In this article, the results of some recent investigations on two types of bismuth‐modified carbon paste electrodes are presented. In the first study, the bismuth‐film carbon paste electrode (BiF‐CPE) operated in situ and employed in anodic stripping voltammetry of Cd(II) and Pb(II) at the low μg L?1 level was of interest in view of choosing the proper Bi(III)‐to‐Me(II) concentration ratios (where Me: Pb or Cd). Such optimization has resulted in significant improvement of detection limits down to 1.0 μg L?1 Cd and 0.8 μg L?1 for Pb, which allowed us to apply the BiF‐CPE for analysis of selected real samples of tap and sea water. The BiF‐CPE was also further investigated for its application in highly alkaline media. In this case, attention was focused on the complex‐forming capabilities of the OH ions and their effect on the anodic stripping characteristics of some heavy metals (i.e. Cd, Pb, Tl) as well as upon the formation of the bismuth film itself. The last example deals with the continuing characterization of the recently introduced carbon paste electrodes modified with bismuth powder (Bi‐CPEs) which combine the advantageous properties of carbon paste material with the favorable electrochemical properties of bismuth. Three series of electrodes, differing either in the content of metallic bismuth (from 8 to 50% w/w) or in the type of the carbon powder used (two spectroscopic types of graphite and powdered glassy carbon), were compared and the respective relations to the optimal carbon paste composition evaluated. Attractive electroanalytical performance of the Bi‐CPE in anodic stripping voltammetry is demonstrated for selected model mixtures of heavy metals (Mn, Zn, Cd, Pb, Tl, and In).  相似文献   

10.
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1?×?10?10 to 1?×?10?5 mol L?1 was obtained with a detection limit of 0.03 nmol L?1. It was applied to detect AFB1 in hogwash oil successfully.  相似文献   

11.
This work reports the determination of 5 neonicotinoid pesticides (Clothianidin, Imidacloprid, Thiamethoxam, Nitenpyram and Dinotefuran) in water samples by cathodic differential pulse (DP) voltammetry at screen‐printed disposable sensors featuring a sputtered bismuth thick‐film working electrode, a Ag reference electrode and a carbon counter electrode. The performance of the bismuth thick‐film electrodes was compared to that of a home‐made bismuth thin‐film electrode and a bismuth‐bulk electrode. The electrodes were further characterized by electrochemical and optical techniques. The effect of the pH of the supporting electrolyte on the DP reduction currents of the 5 pesticides was studied. The limits of quantification (LOQs) in 4 water matrices (distilled water, tap water, mineral water and surface water) were in the range 0.76 to 2.10 mg L?1 but severe matrix effects were observed in the analysis of mineral and, especially, surface water samples. Using a solid‐phase extraction (SPE) procedure using Lichrolut EN cartridges and elution with methanol, the matrix effects were substantially reduced and the LOQs were in the range 9 to 17 µg L?1. The recoveries of surface water samples spiked with the 5 target neonicotinoids at two concentration levels (20 and 50 µg L?1) were in the range 89 to 109 % and the % relative standard deviations ranged from 4.3 to 7.2 %.  相似文献   

12.
A new chemically modified carbon paste electrode by 2,2?-((pyridine-2,6-diylbis(azanylylidene))bis(methanylylidene))diphenol (L) ligand has been made and used as a sensor for determination of trace mercury and cadmium ions with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Complexation studies of the ligand with Cu2+, Zn2+, Hg2+, Ni2+ and Cd2+ ions by conductometric method in acetonitrile–ethanol mixture at 25°C show that the ML complexes have formed. The formation constants of complexes were calculated from the computer fitting of the molar conductance–mole ratio data, and the stability of the resulting complexes varied in order of Cd2+ > Hg2+ > Cu2+ > Zn2+ > Ni2+. Then a simple and effective chemically modified carbon paste electrode with L was prepared, and the electrochemical properties and applications of the modified electrode were investigated. Under the optimal conditions, the detection limit was 0.0494 μg L?1 and 0.0782 μg L?1 for cadmium and mercury ions, respectively, and the linear range for both metal ions were from 1 to 100 μg L?1. The electrode shows high sensitivity, reproducibility and low cost, and was successfully applied to determination of Cd2+ and Hg2+ ions in water samples with recovery in the range of 97–101%.  相似文献   

13.
In this work, we described an electrochemical sensor using a nanocomposite based on graphene oxide (GO), silver nanoparticles (AgNP), and disordered mesoporous silica (SiO2), which was used for the determination of bisphenol A in water samples. Initially, the hybrid material SiO2/GO was synthesized via sol-gel process, subsequently decorated with AgNP with an approximate 20 nm particle size prepared directly on the surface of the SiO2/GO using N, N-dimethylformamide (DMF) as an agent reducer. A glassy carbon electrode was modified with SiO2/GO/AgNP and used in developing a sensitive electrochemical sensor for the determination of bisphenol A in phosphate buffer 0.1 mol L?1 (pH 7.0). The detection limit was 45.2 nmol L?1 with a linear response range between 1.0 × 10?7 and 2.6 × 10?6 mol L?1 and a sensitivity of 1.27 × 10?7 A mol?1 L. Finally, the optimized electrochemical sensor was used for the quantitation of endocrine interfering in natural waters.  相似文献   

14.
A voltammetric sensor was fabricated by applying a Nafion and multi-walled carbon nanotubes (MWCNTs) composite film on the surface of a carbon ionic liquid electrode (CILE), which was prepared by mixing 1-butyl-3-methylimidazolium hexafluorophosphate with graphite powder. The electrochemical behavior of adenine on the Nafion-MWCNTs/CILE was investigated in pH 5.5 buffer solution. Adenine showed an irreversible adsorption-controlled oxidation reaction with enhanced electrochemical response, which was due to the presence of high conductive MWCNTs on the CILE surface. The electrochemical parameters of adenine electro-oxidation were determined, and the experimental conditions were optimized. Under the optimal conditions, the oxidation peak current was linear to the adenine concentration over the range of 1.0?×?10?7 to 7.0?×?10?5 mol L?1 with a detection limit of 3.3?×?10?8 mol L?1 (signal/noise?=?3). The electrode showed good stability and selectivity, and was further applied to milk powder samples with satisfactory results.  相似文献   

15.
Blood cortisol level is routinely analysed in laboratory medicine, but the immunoassays in widespread use have the disadvantage of cross-reactivity with some commonly used steroid drugs. Mass spectrometry has become a method of increasing importance for cortisol estimation. However, current methods do not offer the option of accurate mass identification. Our objective was to develop a mass spectrometry method to analyse salivary, serum total, and serum free cortisol via accurate mass identification. The analysis was performed on a Bruker micrOTOF high-resolution mass spectrometer. Sample preparation involved protein precipitation, serum ultrafiltration, and solid-phase extraction. Limit of quantification was 12.5 nmol L?1 for total cortisol, 440 pmol L?1 for serum ultrafiltrate, and 600 pmol L?1 for saliva. Average intra-assay variation was 4.7 %, and inter-assay variation was 6.6 %. Mass accuracy was <2.5 ppm. Serum total cortisol levels were in the range 35.6–1088 nmol L?1, and serum free cortisol levels were in the range 0.5–12.4 nmol L?1. Salivary cortisol levels were in the range 0.7–10.4 nmol L?1. Mass accuracy was equal to or below 2.5 ppm, resulting in a mass error less than 1 mDa and thus providing high specificity. We did not observe any interference with routinely used steroidal drugs. The method is capable of specific cortisol quantification in different matrices on the basis of accurate mass identification.  相似文献   

16.
《Analytical letters》2012,45(12):1834-1845
Currently, the development of a new method for the analysis of glyoxylic acid in selective oxidation of glyoxal system has become a key subject in its new industrial process development. Since solid phase extraction (SPE) could isolate and concentrate desired analytes from complex matrices, in this paper we tested the possibility of coupling SPE technique with HPLC for simultaneous determination of glyoxylic acid, formic acid, and oxalic acid in this complex chemical reaction system. Results demonstrated that the developed method could be successfully applied to this system, after samples were passed through SAX cartridges and yielded recoveries from 96.7% to 103%. The limits of detection were 2.6 × 10?6, 3.6 × 10?6, and 3.5 × 10?7 mol L?1, respectively; and their linear ranges between 1 × 10?6 and 1 × 10?2 mol L?1.  相似文献   

17.
A method for the simultaneous determination of 11 triazine herbicides residues in river water has been developed. It involves solid-phase extraction (SPE) pretreatment step and rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS-MS). In the SPE pretreatment step, the adsorptive performance of MWCNTs material as SPE adsorbent and the elution capability of five kinds of solvents were investigated; in the LC separation step, a rapid resolution high throughput LC column, was used and the gradient elution mode adopted. The linear correlation coefficients (r 2) of the method for 11 target analytes varied between 0.9930 and 0.9980, the mean recoveries were in the range of 73.0 and 98.0% with relative standard deviations (RSD) 2.6 ~ 4.2%, the method detection limits (MDL) were all below 0.1 ng L?1. An expanded uncertainty of not more than 20% was estimated for each analyte at the spiked concentration of 4.0 μg L?1. The proposed method was applied to the determination of the residue concentrations of 11 pollutants in Songhuajiang River water.  相似文献   

18.
In this article a sensitive differential pulse stripping voltammetry technique on Nafion‐coated bismuth‐film electrode (NCBFE) was studied for the simultaneous determination of zinc, cadmium, and lead ions in blood samples at ultra trace levels. The measurement results were in excellent agreement with those obtained from atomic absorption spectroscopy. Various operational parameters were investigated and discussed in terms of their effect on the measurement signals. Under optimal conditions, calibration curves for the simultaneous determination of zinc, cadmium, and lead ions were achieved, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L?1 for Cd(II), 0.13 μg L?1 for Pb(II), and 0.97 μg L?1 for Zn(II) respectively.  相似文献   

19.
A biosensor for the determination of heavy metal cations based on glucose oxidase enzymatic inhibition has been developed. The biosensor was assembled on carbon film electrode supports with glucose oxidase immobilised by cross-linking with glutaraldehyde on top of a film of poly(neutral red) as redox mediator, prepared by electropolymerisation. The biosensor was used to determine the metallic cations, cadmium, copper, lead and zinc in the presence of chosen amounts of glucose. The detection limits were found to be 1 μg L?1 for cadmium, 6 μg L?1 for copper, 3 μg L?1 for lead and 9 μg L?1 for zinc. Inhibition constants were determined by using the Dixon plot, and the type of inhibition induced by the metallic cations was evaluated from Cornish-Bowden plots plus Dixon plots, it being found that the inhibition is reversible and competitive for cadmium, mixed for copper and lead and uncompetitive for zinc. Copper-inhibited glucose oxidase to a greater extent followed by cadmium, lead and zinc. Regeneration of the glucose oxidase response was studied by using Ethylene diamine tetracetic acid metal-chelating agent and the nonionic surfactant Triton X-100. The suitability of the biosensor for determination in foodstuffs or beverages which contain trace concentrations of metals was investigated by performing recovery tests in commercial milk samples.  相似文献   

20.
A simple, low cost, and highly sensitive electrochemical sensor, based on a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode (N/IL/G/SPCE) was developed to determine zinc (Zn(II)), cadmium (Cd(II)), and lead (Pb(II)) simultaneously. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating with a bismuth film (BiF), the developed electrode exhibited well-defined and separate peaks for Zn(II), Cd(II), and Pb(II) by square wave anodic stripping voltammetry (SWASV). Analytical characteristics of the BiF/N/IL/G/SPCE were explored with calibration curves which were found to be linear for Zn(II), Cd(II), and Pb(II) concentrations over the range from 0.1 to 100.0 ng L−1. With an accumulation period of 120 s detection limits of 0.09 ng mL−1, 0.06 ng L−1 and 0.08 ng L−1 were obtained for Zn(II), Cd(II) and Pb(II), respectively using the BiF/N/IL/G/SPCE sensor, calculated as 3σ value of the blank. In addition, the developed electrode displayed a good repeatability and reproducibility. The interference from other common ions associated with Zn(II), Cd(II) and Pb(II) detection could be effectively avoided. Finally, the proposed analytical procedure was applied to detect the trace metal ions in drinking water samples with satisfactory results which demonstrates the suitability of the BiF/N/IL/G/SPCE to detect heavy metals in water samples and the results agreed well with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号