首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteins with molecular mass (M(r)) <20 kDa are often poorly separated in 2-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. In addition, low-M(r) proteins may not be readily identified using peptide mass fingerprinting (PMF) owing to the small number of peptides generated in tryptic digestion. In this work, we used a 2-D liquid separation method based on chromatofocusing and non-porous silica reversed-phase high-performance liquid chromatography to purify proteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis and protein identification. Several proteins were identified using the PMF method where the result was supported using an accurate M(r) value obtained from electrospray ionization TOFMS. However, many proteins were not identified owing to an insufficient number of peptides observed in the MALDI-TOF experiments. The small number of peptides detected in MALDI-TOFMS can result from internal fragmentation, the few arginines in its sequence and incomplete tryptic digestion. MALDI-QTOFMS/MS can be used to identify many of these proteins. The accurate experimental M(r) and pI confirm identification and aid in identifying post-translational modifications such as truncations and acetylations. In some cases, high-quality MS/MS data obtained from the MALDI-QTOF spectrometer overcome preferential cleavages and result in protein identification.  相似文献   

2.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

3.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

4.
Chromatographically purified recombinant human serum albumin (rHSA), produced in genetically transformed yeast cells, was characterized using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS techniques. The molecular mass of the intact protein was determined to be 66671, in good agreement with that of purified HSA which was used as a standard. The identity of rHSA to its natural counterpart was established with high precision using peptide mass fingerprinting of tryptic peptides. Partial amino acid sequence data for rHSA were obtained using Ettan CAF MALDI Sequencing Kit and post-source decay on the tryptic peptides. The results achieved provide strong evidence that MALDI-TOF-MS is an important analytical technique for characterising gene products and for establishing the identity and bio-compatibility of recombinant proteins relative to their natural counterparts.  相似文献   

5.
一种基于肽质量指纹谱技术鉴定蓖麻毒素的新方法   总被引:3,自引:0,他引:3  
应用基质辅助激光解吸电离飞行时间质谱(MALD I-TOF/MS)法实现了对蓖麻毒素(R ic in)的鉴定。测定蓖麻毒素的分子量为62925Da,实现了蓖麻粗毒的凝胶电泳分离,并通过胶内酶切获得了蓖麻毒素的肽质量指纹谱(PMF);经过数据库检索,在输入检索的22条肽段中有17条获得了匹配。检索结果显示,利用生物质谱技术是鉴定蓖麻毒素的最有效的新方法之一。  相似文献   

6.
In this study, we explored the MS/MS behavior of various synthetic peptides that possess a lysine residue at the N-terminal position. These peptides were designed to mimic peptides produced upon proteolysis by the Lys-N enzyme, a metalloendopeptidase issued from a Japanese fungus Grifola frondosa that was recently investigated in proteomic studies as an alternative to trypsin digestion, as a specific cleavage at the amide X-Lys chain is obtained that provides N-terminal lysine peptide fragments. In contrast to tryptic peptides exhibiting a lysine or arginine residue solely at the C-terminal position, and are thus devoid of such basic amino acids within the sequence, these Lys-N proteolytic peptides can contain the highly basic arginine residue anywhere within the peptide chain. The fragmentation patterns of such sequences with the ESI-QqTOF and MALDI-TOF/TOF mass spectrometers commonly used in proteomic bottom-up experiments were investigated.  相似文献   

7.
Rubber elongation factor (REF) is considered as one of the major allergens present in latex. An extraction and purification protocol for preparation of REF standards has been modified. A protein fraction was extracted from ammoniated latex sap and purified by gel filtration chromatography. The purified and concentrated proteins were separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis into two major bands. These bands were further characterised by matrix-assisted laser desorption/ionisation time-of-flight and nano-electrospray ionization mass spectrometry. REF and a truncated form could be ascertained by the mass and fragmentation pattern of the tryptic peptides. In the faster migrating band an additional peptide could be identified. This peptide is also present in Hevb3 and a Mr 27000 latex allergen. Our findings indicate that conventional REF preparations as standards may contain additional allergenic proteins.  相似文献   

8.
The ability to detect protein variants and post-translational modifications by mass spectrometry has become increasingly important. Unfortunately, the ability to detect variants in large intact proteins (>80,000 Da) is limited. Even in the analysis of smaller proteins, algorithms are required to determine the presence of a 2 Da mass shift in an intact 13 kDa protein because the isotopic distribution of the multiply charged ions of the variant overlaps the wild-type distribution. Fortunately, most modern instruments are capable of detecting variants in tryptic peptides derived from intact proteins. If a single common variant protein is known, the presence of a variant tryptic peptide can be easily demonstrated. A more difficult issue is the case where a multiplicity of peptides with multiple amino acid substitutions can be associated with pathology. In these cases a decrease in the relative amount of a variant peptide relative to other internal tryptic fragments would be diagnostic. However, the variability associated with the analysis of in-gel or solution digests of proteins, related to efficiencies in digestion, extraction and ionization, confounds variant analysis at the peptide level. A strategy was developed to normalize for this variability by utilizing multiple isotopically labeled internal standards for multiple peptides derived from the same protein. Erythrocyte spectrin from 36 normal and 25 abnormal osmotic fragility samples was analyzed as a test case. Three isotopically labeled target peptides comprising the alpha/beta-spectrin self-association sites were added to purified digested alpha-spectrin. The utilization of multiple internal standards demonstrates the capability to normalize for sample variability due to ionization efficiency, solvent effects, digestion and extraction efficiency.  相似文献   

9.
Separation of a protein mixture by size-exclusion chromatography (SEC) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Identification of proteins in the collected fractions was performed both as intact proteins by MALDI-TOFMS and using peptide mass fingerprinting (PMF) after their digestion with trypsin. The presence of salts mostly disturbs the MALDI-TOFMS signal and, therefore, proper purification or desalting procedures must be employed. Four desalting procedures (desalting column packed with Sephadex G-100, on-target washing, centrifugal filter devices and ZipTip C(18)) for purification of fractions of proteins separated by SEC and their tryptic digests prior to determination of their exact molecular masses by MALDI-TOFMS were compared. In the case of intact proteins, the experiments showed that the best desalting procedures are the use of ZipTip C(18) pipette tips and Ultrafree CL centrifugal filter devices. The peptide digests can be purified by using ZipTip C(18) pipette tips or on-target washing when both of these procedures provide similar results. On-target washing can be used as a simple procedure to improve the mass spectra of salt-containing samples. Analyses of the droplets collected after the on-target washing show losses of sample and matrix caused by dissolution of these compounds during this procedure. Further, it was found that protein identification based on PMF is more sensitive than analyses of intact proteins and that multiple on-target washing is very advantageous for analyses of peptide mixtures with a high content of salts.  相似文献   

10.
A simple and inexpensive nano high performance liquid chromatography system (nano-LC) employing the exponential dilution method for gradient separations was built. The system was used to analyze a tryptic digest of Escherichia coli uracil DNA glycosylase (Ung; Mr = 25,563), a DNA-binding protein that initiates the uracil-excision DNA repair process by catalyzing the release of uracil from the deoxyribose phosphate backbone of DNA. Both on-line and off-line approaches to analyzing peptides produced by in-gel digestion of Ung are demonstrated. The on-line approach uses nano-high performance liquid chromatography (HPLC)/micro-electrospray MS to assign peptide masses. The off-line approach uses matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nano-electrospray/collision-induced dissociation (CID) tandem mass spectrometry, to analyze fractions (2-3 microL) collected manually from the nano-LC system. The nano-electrospray technique allows detailed fragmentation information to be obtained at different collision energies with only a marginal increase in sample handling due to the nano-LC step.  相似文献   

11.
Microchip-based proteomic analysis requires proteolytic digestion of proteins in microdevices. Enzyme reactors in microdevices, fabricated in glass, silicon, and PDMS substrates, have recently been demonstrated for model protein digestions. The common approach used for these enzyme reactors is employment of a syringe pump(s) to generate hydrodynamic flow, driving the proteins through the reactors. Here we present a novel approach, using electroosmotic flow (EOF) to electrokinetically pump proteins through a proteolytic system. The existence of EOF in the proteolytic system packed with immobilized trypsin gel beads was proven by imaging the movement of a neutral fluorescent marker. Digestions of proteins were subsequently carried out for 12 min, and the tryptic peptides were analyzed independently using capillary electrophoresis (CE) and MALDI-TOF mass spectrometry (MS). The results from CE analysis of the tryptic peptides from the EOF-driven proteolytic system and a conventional water bath digestion were comparable. MALDI-TOF MS was used to identify the parent protein and the tryptic peptides using MS-Fit database searching. The potential utility of the EOF-driven proteolytic system was demonstrated by direct electro-elution of proteins from an acrylamide gel into the proteolytic system, with elution and tryptic digestion achieved in a single step. The EOF-driven proteolytic system, thus, provides a simple way to integrate protein digestion into an electrophoretic micro total analysis system for protein analysis and characterization.  相似文献   

12.
Transmissible spongiform encephalopathies (TSEs) are characterised by the accumulation in the tissues of affected individuals of an abnormal form (PrP(Sc)) of a protein naturally produced by the host, the cellular prion protein (PrP(C)). In sheep, susceptibility to TSEs is tightly controlled by polymorphism at positions 136 (A or V), 154 (R or H) and 171 (R or Q) of the Prnp gene encoding the prion protein (PrP). Quantification of PrP variants at positions 136, 154 and 171 can be achieved by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometric analysis of the respective peptides 114-139, 152-159 and 160-171 obtained after tryptic digestion of the PrP protein. In this study we quantified the tryptic peptide 114-139 containing the first polymorphic site. Quantification was either relative, between variants of this peptide, or absolute with respect to the C-terminally (18)O-labelled peptide obtained by hydrolysing known amounts of recombinant protein with trypsin in H(2) (18)O. After purification of PrP(C) and PrP(Sc) from the brain of two heterozygous sheep carrying either the ARQ/VRQ or ARR/VRQ genotypes, the proportion of each variant was measured. In the ARQ/VRQ animal, while both variants were equally represented in the normal isoform, the VRQ variant was predominantly found in the abnormal PrP protein, suggesting dissimilar behaviour of the two variants in the pathological process. The situation was even more contrasted in the ARR/VRQ animal where PrP(Sc) was solely composed of the VRQ variant. These two examples clearly illustrate the value of MALDI-TOF analysis, combined with appropriate immunopurification techniques, in seeking a precise understanding of the influence of PrP polymorphisms on TSE pathogenesis.  相似文献   

13.
Peptide profile of human acquired enamel pellicle using MALDI tandem MS   总被引:2,自引:0,他引:2  
The present study proposes a strategy for human in vivo acquired enamel pellicle (AEP) peptidome characterisation based on sequential extraction with guanidine and TFA followed by MALDI-TOF/TOF identification. Three different nanoscale analytical approaches were used: samples were subjected to tryptic digestion followed by nano-HPLC and mass spectrometry (MS and MS/MS) analysis. Undigested samples were analysed by LC-MS (both linear and reflector modes) and LC-MS/MS analysis, and samples were subjected to nano-HPLC followed by on-plate digestion and mass spectrometry (MS and MS/MS) analysis. The majority of the identifications corresponded to peptide/protein fragments of salivary protein, belonging to the classes: acidic PRPs, basic PRPs, statherin, cystatins S and SN and histatin 1 (all also identified in intact form). Overall, more than 90 peptides/proteins were identified. Results clearly show that peptides with acidic groups are enriched in the TFA fraction while peptides with no acidic or phosphate groups are prevalent on the guanidine extract. Also, phosphorylated peptides were observed mainly on the TFA fraction. Fragments present in the AEP show a predominance of cleavage points located at Arg, Tyr and Lys residues. Obtained data suggest that proteolytic activity could influence AEP formation and composition.  相似文献   

14.
This study records a novel application of methacrylate-based monolithic columns for MALDI-TOF/TOF MS analyses in proteomics for pre-concentration and separation of peptides derived from protein digestion. Reversed-phase monolithic capillary columns (30 mm × 0.32 mm i.d.) were created inside the fused silica capillary via thermal-initiated free-radical polymerization of ethylene glycol dimethacrylate and lauryl methacrylate monomers in the presence of 1-propanol and 1,4-butandiol as a porogen system. The elution of peptides was achieved using a linear gradient of acetonitrile from 0 to 60% in water with 0.1% trifluoroacetic acid formed in a microsyringe. Individual fractions of separated peptides were collected on the MALDI target spots covered with alpha-cyano-4-hydroxycinnamic acid used as a matrix and then they were analyzed using MALDI-TOF/TOF mass spectrometry. The developed method was tested with a mixture of tryptic peptides from bovine serum albumin and its applicability was also tested for tryptic in-gel digests from barley grain extracts of water soluble proteins separated using SDS gel electrophoresis. The number of detected peptides was approximately three to four times higher compared to the analysis without previous separation. These results show an improved quality of sample information with the higher amount of identified peptides which increased protein sequence coverage and improved sensitivity of mass spectrometry measurements.  相似文献   

15.
A simple method to synthesize electrostatically self-assembled azides on zinc sulfide nanoparticles (ZnS-N3 NPs) was described and then it was further applied as a multifunctional nanoprobe such as enriching, desalting, accelerating and separation-/washing free nanoprobes for rapid analysis of peptides and proteins and microwave assisted tryptic digested proteins in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ZnS-N3 NPs were characterized by UV-vis, FT-IR, SEM and TEM spectroscopy. The ZnS-N3 NPs can effectively enrich signal intensities for 2-10 times for various peptides and proteins including HW6, insulin, ubiquitin, cytochrome c, lysozyme, myoglobin and bovine serum albumin (BSA) in MALDI-TOF MS. Furthermore, we also demonstrated that the ZnS-N3 NPs can serve as accelerating probes for microwave assisted tryptic digestion of proteins in MALDI-TOF MS. The applicability of the present method on complex sample analysis such as milk proteins from cow milk and ubiquitin and ubiquitin like proteins from oyster mushroom were also demonstrated.  相似文献   

16.
反转数据库常被用于估算大规模蛋白质组研究中串联质谱搜索数据库结果的可靠性。然而,对于经典的且现在依然在产出的肽质量指纹谱的数据,这种方法并不适用。为解决该问题,构建了另外一种随机数据库,称为反转错位数据库。这种数据库是在反转数据库的基础上,将序列中的K和R及其后的氨基酸交换位置(对于胰蛋白酶切割的结果)获得。这种处理避免了某些肽段因前后胰蛋白酶酶切位点氨基酸相同而在序列反转后质量依然不变,导致肽质量指纹谱法无法区分的问题。通过串联质谱和肽质量指纹谱测试数据的搜索结果,证明了这种方法同时适用于串联质谱和肽质量指纹谱的数据。这种方法扩大了经典反转数据库的适用范围,将对评估和整合串联质谱和肽质量指纹谱的数据具有重要意义。  相似文献   

17.
肽质量指纹谱鉴定蛋白质时生物信息学分析条件的优化   总被引:1,自引:0,他引:1  
为了优化肽质量指纹谱(peptide mass fingerprint,PMF)鉴定蛋白质的生物信息学分析条件。将牛碳酸酐酶2(carbonic anhydrase-2,CAH2)和人热休克蛋白70s(Hsp70s)进行2-DE分离、酶解,肽段经过MALDI-TOFMS分析得到PMF数据。选择Swissprot、MSDB、NCBInr、Random等数据库和MASCOT与MS-Fit搜索引擎,以牛CAH2为模型优化搜索参数,结果表明:Swissprot是适合做蛋白PMF分析的数据库;主要参数最佳设置为:漏切位点数为1个,肽质量容错数为±1Da,同时肽质量类型选择平均分子质量比单同位素质量更便于候选蛋白的筛选。最后用人Hsp70s蛋白的PMF数据检验优化条件,结果表明,所选择的数据库及参数是可靠的。  相似文献   

18.
The potential of protein fractionation hyphenated to mass spectrometry (MS) to detect and characterize the transgenic protein present in Roundup Ready soya and maize has been investigated. Genetically modified (GM) soya and maize contain the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Agrobacterium tumefaciens CP4, which confers resistance to the herbicide glyphosate. The GM soya and maize proteomes were fractionated by gel filtration, anion-exchange chromatography and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) prior to MS. This facilitated detection of a tryptic peptide map of CP4 EPSPS by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and nanoelectrospray ionization quadrupole time-of-flight (nanoESI-QTOF) MS. Subsequently, sequence information from the CP4 EPSPS tryptic peptides was obtained by nanoESI-QTOF MS/MS. The identification was accomplished in 0.9% GM soya seeds, which is the current EU threshold for food-labeling requirements.  相似文献   

19.
We describe an innovative approach - using a high concentration of trypsin-modified magnetic nanoparticles (TMNPs) - for the rapid and efficient digestion of proteins at elevated temperature. The required digestion time could be reduced to less than 10 s. After digestion, the TMNPs were collected magnetically from the sample solution for reuse and the digested peptides were characterized using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Protein digestion was optimized when using the TMNPs (5 microg/microL) at 57 degrees C; a significantly high peptide coverage was achieved for protein identification (e.g., 98% for lysozyme). Although a high concentration of TMNPs was used for digestion, the short digestion time led to much lower amounts of trypsin peptides being produced through self-digestion. As a result, interference in the mass spectrometric detection of the peptide ions was reduced significantly.  相似文献   

20.
Bioactive peptides and tryptic digests of various proteins were separated under acidic and alkaline conditions by ion-pair-reversed-phase high-performance liquid chromatography (RP-HPIPC) in 200 microm I.D. monolithic, poly(styrene-divinylbenzene)-based capillary columns using gradients of acetonitrile in 0.050% aqueous trifluoroacetic acid, pH 2.1, or 1.0% triethylamine-acetic acid, pH 10.6. Chromatographic performances with mobile phases of low and high-pH were practically equivalent and facilitated the separation of more than 50 tryptic peptides of bovine serum albumin within 15-20 min with peak widths at half height between 4 and 10 s. Neither a significant change in retentivity nor efficiency of the monolithic column was observed during 17-day operation at pH 10.6 and 50 degrees C. Upon separation by RP-HPIPC at high-pH, peptide detectabilities in full-scan negative-ion electrospray ionization mass spectrometry (negESI-MS) were about two to three times lower as compared to RP-HPIPC at low-pH with posESI-MS detection. Tandem mass spectra obtained by fragmentation of deprotonated peptide ions in negative ion mode yielded interpretable sequence information only in a few cases of relatively short peptides. However, in order to obtain sequence information for peptides separated with alkaline mobile phases, tandem mass spectrometry (MS/MS) could be performed in positive ion mode. The chromatographic selectivities were significantly different in separations performed with acidic and alkaline eluents, which facilitated the fractionation of a complex peptide mixture obtained by the tryptic digestion of 10 proteins utilizing off-line, two-dimensional RP-HPIPC at high pH x RP-HPIPC at low pH and subsequent on-line identification by posESI-MS/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号