首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of palladium(II) complexes of general formula [Pd(LH+)Cl3] (112) containing 6-benzylaminopurine derivatives has been prepared [L?=?6-(2-methoxybenzylamino)purine (1), 6-(3-methoxybenzylamino)purine (2), 6-(4-methoxybenzylamino)purine (3), 6-(2-hydroxy-benzylamino)purine (4), 6-(3-hydroxybenzylamino)purine (5), 6-(4-hydroxybenzylamino) purine (6), 6-(2-fluorobenzylamino)purine (7), 6-(3-fluorobenzylamino)purine (8), 6-(4-fluorobenzylamino)purine (9), 6-(2-chlorobenzylamino)purine (10), 6-(3-chlorobenzylamino) purine (11) and 6-(4-chlorobenzylamino)purine (12)]. The compounds have been characterized by elemental analysis, IR, ES+ MS and 1H- and 13C-NMR spectroscopy, and two of them, 6 and 12, also by TG/DSC analyses. The complexes have been screened in vitro against the four human tumour cell lines G-361, HOS, K-562 and MCF7.  相似文献   

2.
Chloroform extract from the leaves of Turraea vogelii Hook f. ex Benth demonstrated cytotoxic activity against a chronic myelogenous leukemia cell, K-562 with IC50 of 14.27 μg/mL, while chloroform, ethyl acetate and methanol extracts from the stem of the plant inhibited K-562 cells growth with IC50 of 19.50, 24.10 and 85.40 μg/mL respectively. Bioactive chloroform extract of Turraea vogelii leaves affords two triterpenoids: oleana-12,15,20-trien-3β-ol (1), and oleana-11,13-dien-3β,16α,28-triol (2), with six fatty esters, ethyl hexaeicos-5-enoate (3), 3-hydroxy-1,2,3-propanetriyltris(tetadecanoate) (4), 1,2,3-propanetriyl(7Z,7′Z,7′′Z)tris(-7-hexadecenoate) (5), 1,2,3-propanetriyl(5Z,5′Z,5′′Z)tris(-5-hexadecenoate) (6), 1,2,3-propanetriyltris(octadecanoate) (7), and 2β-hydroxymethyl tetraeicosanoate (8). Tetradecane (9), four fatty acids: hexadecanoic acid (10), tetradecanoic acid (11), (Z)-9-eicosenoic acid (12), and ethyl tetradec-7-enoate (13) were isolated from chloroform extract of Turraea vogelii stem. 1,2,3-propanetriyltris(heptadecanoate) (14), (Z)-9-octadecenoic acid (15) and (Z)-7-tetradecenoic acid (16) were isolated from ethyl acetate extract while (Z)-5-pentadecenoic acid (17) was obtained from methanol extract of the plant stem. Compounds 1, 2, 5, 6, 11, 12, 15, 16 and 17 exhibited pronounced antiproliferative activity against K-562 cell lines.  相似文献   

3.
Abstract

Dithiadications bearing 1,8-bis(alkylthio)naphthalene 2A(a-e) and 2,2′-bis(alkylthio)biphenyl 2B(a-e) structure undergo either the facile deprotonation from the methyl group or dealkylation from the methylene groups by the triflate anion. Dications 2A(a) and 2B(a) having methyl groups were deprotonated readily to afford cyclic sulfonium salts 3A(a) and 3B(a). However, dithiadications 2A(b-e) and 2B(b-e) having ethyl, propyl, isopropyl and benzyl groups were readily dealkylated even at -45°C to give thiasulfonium salts 4A(b-e) and 4B(b-e) and alkyl triflates 5(a-e) in good yields. The intermediary formation of dithiadications 2A(a-e) and 2B(a-e) were confirmed by direct observation using NMR spectroscopy, D-labelled experiments and trapping experiments.  相似文献   

4.
The rates of aqua substitution from [Pt{2-(pyrazol-1-ylmethyl)quinoline}(H2O)2](ClO4)2, [Pt(H2Qn)], [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)quinoline}(H2O)2](ClO4)2, [Pt(dCH3Qn)], [Pt{2-[(3,5-bis(trifluoromethyl)pyrazol-1-ylmethyl]quinoline}(H2O)2](ClO4)2, [Pt(dCF3Qn)], and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazol-1-ylmethyl]pyridine}(H2O)2](ClO4)2, [Pt(dCF3Py)], with three sulfur donor nucleophiles were studied. The reactions were followed under pseudo-first-order conditions as a function of nucleophile concentration and temperature using a stopped-flow analyzer and UV/visible spectrophotometry. The substitution reactions proceeded sequentially. The second-order rate constants for substituting the aqua ligands in the first substitution step increased in the order Pt(dCH3Qn) < Pt(dCF3Qn) < Pt(H2Qn) < Pt(dCF3Py), while that of the second substitution step was Pt(dCH3Qn) < Pt(dCF3Qn) < Pt(dCF3Py) < Pt(H2Qn). The reactivity trends confirm that the quinoline substructure in the (pyrazolylmethyl)quinoline ligands acts as an apparent donor of electron density toward the metal center rather than being a π-acceptor. Measured pKa values from spectrophotometric acid–base titrations were Pt(H2Qn) (pKa1 = 4.56; pKa2 = 6.32), Pt(dCH3Qn) (pKa1 = 4.88; pKa2 = 6.31), Pt(dCF3Qn) (pKa1 = 4.07; pKa2 = 6.35), and Pt(dCF3Py) (pKa1 = 4.76; pKa2 = 6.27). The activation parameters from the temperature dependence of the second-order rate constants support an associative mechanism of substitution.  相似文献   

5.
Two types of bis(β-diketonato) Co(II) complexes, [Co(CNacac)2] (CNacac?=?3-cyano-pentane-2,4-dionato), and [Co(dbm)2] (dbm?=?dibenzoylmethanato or 1,3-diphenyl-propane-1,3-dionato) were examined as linear building blocks for the construction of coordination polymers in combination with two oligopyridines, 1,4-bis(4,2’:6’,4”-terpyridin-4’-yl)benzene (L1) and 1,3-bis(3,2’:6’,3”-terpyridin-4’-yl)benzene) (L2). From combinations of [Co(CNacac)2] with L1 and L2, 2-D coordination polymers, [Co(CNacac)2]2(L1)·(CHCl3)·(CH3OH) (CoCN-1) and [Co(CNacac)2](L2)1/2·(tetrachloroethane)3/2 (CoCN-2), are obtained. Both CoCN-1 and CoCN-2 have 2D (4,4) net structures, in which L1 and L2 are tetradentate. In contrast, combination of [Co(dbm)2] with L2 affords a 1-D coordination polymer, [Co(dbm)2](L2)·4(CH3OH) (Codbm-1), in which L2 is bidentate. L2 as a tetradentate ligand was inhibited by bulky phenyl rings in [Co(dbm)2]. These results indicate that [Co(CNacac)2] with a relatively simplified structure is useful as a linear building block in combinations with bulky oligopyridines.  相似文献   

6.
Sialic acids are essential components of host‐cell surface receptors for infection of influenza virus. To investigate the specific receptor structures recognized by various influenza A viruses, a series of lacto‐ and neolacto‐series ganglioside analogs containing N‐glycolylneuraminic acid (Neu5Gc) have been synthesized. The pentasaccharide structures of Neu5Gc‐α‐(2→3)/(2→6)‐lactotetraose (IV3(6)Neu5GcLcOse) and Neu5Gc‐α‐(2→3)/(2→6)‐neolactotetraose (IV3(6)Neu5GcnLcOse) were constructed by glycosylation of the suitably protected trisaccharide acceptors (2A and 2B) with the Neu5Gc‐α‐(2→3)/(2→6)‐Gal trichloroacetimidate donors (1 and 21), respectively. Transformation of the 2‐(trimethylsilyl)ethyl group at the reducing end in 4, 11, 23, and 30 into the trichloroacetimidate group gave a series of Neu5Gc‐α‐(2→3)/(2→6)‐lacto‐ and neolactotetraose donors (7, 13, 26, and 33), which were coupled with 2‐(tetradecyl)hexadecanol (8), to give the corresponding glycolipids (9, 14, 27, and 34). Finally, the complete removal of the O‐acyl groups and saponification of the methyl ester group gave the desired ganglioside analogs (10, 15, 28, and 35).  相似文献   

7.
The reaction of [ZnCl2] with N-cyclopentyl-1-(quinolin-2-yl)methanimine (LA), N-cyclohexyl-1-(quinolin-2-yl)methanimine (LB), N-cyclohexyl-1-(pyridin-2-yl)methanimine (LC), 2,6-diethyl-N-(pyridin-2-ylmethylene)aniline (LD), N-cyclopentyl-1-(pyridin-2-yl)methanimine (LE), and N-phenyl-(pyridin-2-yl)methanimine (LF) in ethanol produced the bidentate [(NN′)ZnCl2] complexes, [LAZnCl2], [LBZnCl2], [LCZnCl2], [LDZnCl2], [LEZnCl2] and [LFZnCl2], respectively. The molecular structures revealed that the zinc in [LnZnCl2] (Ln = LA ? LD) showed a distorted tetrahedral geometry involving two nitrogens of N,N’-bidentate ligands and two chloride ligands. Most of these initiators were effective for polymerization of methyl methacrylate (MMA) and polymerization of rac-lactide (rac-LA). [LCZnCl2] (with N-cyclohexyl substituted at imine-pyridine moiety) exhibited the highest catalytic activity for MMA polymerization in the presence of modified methylaluminoxane (MMAO) with an activity of 3.33 × 104 g PMMA/mol·Zn·h at 60 °C, giving moderate syndiotactic poly methyl methacrylate (PMMA) with high molecular weight (9.62 × 105 g/mol). The dimethyl derivatives [LnZnMe2] (Ln = LA ? LF), generated in situ, polymerized rac-LA with moderate activity and yielded a polylactide (PLA) with good number-average molecular weights and narrower polydispersity indices (PDIs). [LAZnMe2] effectively initiates the ring-opening polymerization (ROP) of rac-LA to attain heterotactic PLA (Pr = 0.91).  相似文献   

8.
Two new 3-D complexes, [M(L)(4bpy)0.5(H2O)] [M = Cd (1) and = Zn (2)], based on mixed 1,1-cyclobutanedicarboxylic acid (H2L) and 4,4′-bipyridine (4bpy) have been synthesized; 1 and 2 feature (3,4)-connected (63)(65.8) topological networks consisting of pillared 2-D [M(L)(H2O)] layered motifs. Complexes 1 and 2 are photoluminescent materials.  相似文献   

9.
The oxalato-bridged dinickel(II) complex with the title ligand, [Ni2(L a H)2(μ-ox)](ClO4)2·2H2O (1), was prepared and its structure was determined by X-ray crystallography, as well as that of the monomeric nickel(II) complex, [Ni(L a H)ox]ClO4·3H2O (2). In Complexes 1 and 2, the ligand, L a , is folded along the N(4)–Ni(1)–N(11) axis. The antiferromagnetic coupling between the two nickel(II) centers in 1 was revealed and the coupling constant, J?=??17.4?cm?1, and g?=?2.11 were estimated. It was found that the oxalato-bridged dimer 1 was readily converted to the mononuclear cis-nickel(II) complex [NiL a (OH2)](ClO4)2 (3a), in basic aqueous solution. In [NiL a (CH3CN)]I2 (3b), which was derived from 3a, the aminomethyl pendant arm is coordinated to the Ni(II) ion and L a is folded along the N(1)–Ni(1)–N(8) axis.  相似文献   

10.
The coordination chemistry and cationic binding properties of 2,6-bis(pyrazol-1-ylmethyl)pyridine (L1), 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L2), and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (L3) with zinc(II) and cadmium(II) have been investigated. Reactions of L2 with zinc(II) and cadmium(II) nitrate or chloride salts produced monometallic complexes [Zn(NO3)2(L2)] (1), [ZnCl2(L2)] (2), [Cd(NO3)2(L2)] (3), and [CdCl2(L2)] (4). Solid state structures of 1 and 3 confirmed that L2 binds in a tridentate mode. While the nitrates in the zinc complex (1) adopt monodentate binding fashion, in cadmium complex (3), they exhibit bidentate mode. L1L3 show binding efficiencies of 99% for zinc(II), 60% for lead(II), and 30% for cadmium(II) cations from aqueous solutions of the metal ions. Theoretical studies using Density Functional Theory were consistent with the observed extraction results.  相似文献   

11.
The synthesis and characterization of binary Cu(II)- (1), Co(II)- (2), Ni(II)- (3), Mn(II)- (4), Cr(III)- (5), Fe(III)- (6), La(III)- (7), UO2(VI)- (8) complexes with sparfloxacin (HL1) and ternary Cu(II)- (9), Co(II)- (10), Ni(II)- (11), Mn(II)- (12), Cr(III)- (13), Fe(III)- (14), La(III)- (15), UO2(VI)- (16) complexes with sparfloxacin (HL1) and dl-alanine (H2L2) complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV–Vis, thermal analysis and 1H-NMR spectral studies.The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature.All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complexes which were four coordinate, square planar and U- and La-atoms in the uranyl and lanthanide have a pentagonal bipyramidal coordination sphere. The antimicrobial activity of these complexes has been screened against two Gram-positive and two Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with reference drug sparfloxacin. All the binary and ternary complexes showed remarkable potential antimicrobial activity higher than the recommended standard agents. Ni(II)- and Mn(II) complexes exhibited higher potency as compared to the parent drug against Gram-negative bacteria.  相似文献   

12.
ABSTRACT

Synthesis of the terminal trisaccharide sequence of the ganglioside GD3, α-D-Neup5Ac-(2→8)-α-D-Neup5Ac-(2→3)-β-D-Galp-(1→4)-β-D-Glcp-(1→1)-Cer (2) was achieved by employing an α-(2→8) disialyl glycosyl donor (1). Condensation of 1 with the glycosyl acceptor 6, propyl 4,6-O-benzylidene-β-D-galactopyranoside, gave the desired protected trisaccharide 10 (14%) as well as the elimination and hydrolysis products of 6, compounds 8 and 9 respectively. O-Deacetylation and debenzylation of 10 gave the final trisaccharide 11, as its propyl glycoside.  相似文献   

13.
The mononuclear six metal(II) complexes ([Co(mef)2(3-pic)2(CH3OH)2] (1), [Ni(mef)2(3-pic)2(CH3OH)2] (2), [Cu(mef)2(3-pic)2] (3), [Co(mef)2(4-pic)2] (4), [Ni(mef)2(4-pic)2] (5), and [Cu(mef)2(4-pic)2] (6) with mefenamic acid and picoline ligands were synthesized, characterized, and their carbonic anhydrase inhibitory activities were evaluated. The six complexes were characterized by elemental analysis, FT-IR spectroscopy, and thermal analyses. The crystal structures of 1, 3, and 6 were determined by X-ray crystallography. The complexes have octahedral geometry. In 1, the mefenamato ligand behaved as monodentate whereas in 3 and 6, the mefenamato ligand acted as a bidentate ligand. Complexes 3 and 6 consist of the mefenamate and 4-picoline ligands. In 1, unlike the other complexes, methanol acted as a ligand and was involved in the coordination. Carbonic anhydrase I and II isoenzymes were purified from human erythrocytes. The in vitro effects of mefenamic acid, 3-picoline, 4-picoline, and the six metal(II) complexes on these isoenzymes were evaluated.  相似文献   

14.

Bis[thieno(3,2-b)-1,4-diazepine] (4) and bis[imidazo(1′,2′)thieno(3,2-b)-1,4-diazepine (7) derivatives were prepared starting with thieno(2,3-b)thiophenes (1) and (2), respectively. Also, benzodiazepine derivatives (11a–f) were prepared via a reaction of cyclohexenone carboxylates (8a–f) with cyclohexylamine and chloroacetyl chloride followed by cyclization. Also, dibenzoazepines (13) and (14a,b) were prepared via a reaction of (8a) with o-phenylenediamine and o-aminophenol or o-aminothiophenol.  相似文献   

15.
Three new heteroleptic palladium(II) dithiocarbamates with better in vitro anticancer activity than cisplatin were synthesized and characterized by different analytical techniques, elemental analysis, FTIR, NMR, and single crystal X-ray diffraction analysis. The Pd center is chelated by dithiocarbamate ligand {4-benzylpiperazine-1-carbodithioate (1) and (3) or (4-(2-methoxyphenyl)piperazine-1-carbodithioate (2)}, triorganophosphine {tris-(4-flourophenyl)-phosphine (1) and (2) or tris-(4-chlorophenyl)phosphine (3)}, and a chloro-group, resulting in a square planar geometry. The packing diagram reveals a 3D network (1 and 2) and a 2D network (3) composed of various 1D chains in which the molecules are linked via hydrogen bonds (1–3) and halide?π (1, 3) interactions. The anticancer activities of complexes against HeLa cell line varies in the sequence 2 (23.438 μM) > 1 (38.293 μM) > 3 (47.554 μM) > cisplatin (78.075 μM). The cytotoxicity of these complexes is due to their strong induction of oxidative stress and DNA-damage ability leading to apoptosis.  相似文献   

16.
Abstract

Atmospheric pressure chemical ionization mass spectrometry (APCI–MS) has been utilized in the characterization of two series of platinum dithiolene complexes, (COD)Pt(dt) 1, (COD)–Pt(edt) 2, (COD)Pt(dmid) 3, (COD)Pt(mnt) 4, (COD)Pt(eddo) 5, (COD)Pt(dddt) 6 and (Ph3P)2Pt(dt) 7, (Ph3P)2Pt(edt) 8, (Ph3P)2Pt(dmid) 9, (Ph3P)2Pt(dmit) 10, (Ph3P)2Pt(mnt) 11 (where COD = 1,5–cyclooctadiene, dt = ethane–1,2–dithiolate, edt = ethylene–1,2–dithiolate, dmid = 1,3–dithiole–2–oxo–4,5–dithiolate, dmit = 1,3–dithiole–2–thione–4,5–dithiolate, mnt = maleonitrile–1,2–dithiolate, eddo = 4–(ethylene–1′,2′–dithiolate)–1,3-dithiole–2–one, and dddt = 5,6–dihydro–1,4–dithiin–2,3–dithiolate). The series that contains triphenylphosphine is labile toward the loss of HPPh3 +. In addition, an orthometallated species involving the platinum and triphenylphosphine is identified. A dimer is identified for 2, which is shown to be a product of the experiment and not present in the parent material. In addition, a 1:1 adduct with NH4 + is identified for 4 and 11 where the NH4 + originates from the acid hydrolysis of acetonitrile. Finally, a highly unique ion, Pt+, a bare platinum ion, is observed in all COD complexes indicating that a radical mechanism must accompany the decomposition of the COD complexes during the fragmentation process.  相似文献   

17.
Density functional theory was used to study the structure of various isomers of (Me2Cu)Li (1), (Me2Cu)Cu (2), (Me2Cu)Li · 2Me2O (3), and (Me2Cu)Cu · 2Me2S (4) in the gas phase. Isomers of 1 and 3 were shown to be typical cuprates, whereas isomers of 2 and 4 should rather be treated as unsolvated and solvated methylcopper dimers, respectively. The reasons for the difference between structures 2, 4 and 1, 3 were considered. The energies of solvation of 1 by two dimethyl ether molecules (∼34 kcal/mol) and of 2 by two dimethyl sulfide molecules (∼36 kcal/mol) and the dissociation energies of all the compounds to the dimethylcuprate anion and the corresponding cation were calculated. The energies of solvation of 1 and 2 being almost equal, the transformation of 2 into 4 decreased the dissociation energy much more substantially than the transformation of 1 into 3.  相似文献   

18.
The reaction of three positional isomer ligands of bis(1,2,4-triazol-1-ylmethyl)benzene and Co(NCS)2 gives three coordination polymers [Co(obtz)2(NCS)2] n (1), [Co(mbtz)2(NCS)2] n (2), and {[Co(bbtz)2(NCS)2]?·?2DMF} n (3). Polymers 1 and 2 are comprised of similar 1-D double chains. In 1, each chain forms π–π stacking interactions with four adjacent chains (two above and two below) to extend to a 3-D supramolecular network. Polymer 3 is a neutral 2-D (4,4) network. The dangling NCS? inserts into the window of adjacent layers in a mutual relationship and result in a 2-D?→?3-D polythreaded network in 3. The thermal stability and the diffuse reflectance UV-Vis spectroscopy of 1, 2, and 3 were measured.  相似文献   

19.
A new 9,10-dihydrophenanthrene,1,5-dihydroxy-3,4,7-trimethoxy-9,10-dihydrophenanthrene (1) was isolated and identified from the whole plants of Dendrobium moniliforme, as well as 24 known compounds including hircinol (2), (2R*,3S*)-3-hydroxymethyl-9-methoxy-2-(4′-hydroxy-3′,5′-dimethoxyphenyl)-2,3,6,7-tetrahydro-phenanthro[4,3-b]furan-5,11-diol (3), diospyrosin (4), aloifol I (5), moscatilin (6), 3,4′-dihydroxy-3′,4,5-trimethoxybibenzyl (7), gigantol (8), 3,3′-dihydroxy-4,5-dimethoxybibenzyl (9), longicornuol A (10), N-trans-cinnamoyltyramine (11), paprazine (12), N-trans-feruloyl 3′-O-methyldopamine (13), moupinamide (14), dihydroconiferyl dihydro-p-coumarate (15), dihydrosinapyl dihydro-p-coumarate (16), 3-isopropyl-5-acetoxycyclohexene-2-one-1 (17), p-hydroxybenzaldehyde (18), vanillin (19), p-hydroxyphenylpropionic acid (20), vanillic acid (21), protocatechuic acid (22), (+)-syringaresinol (23), β-sitosterol (24) and daucosterol (25). Compounds 3, 4, 13, 16, 17 and 20 were isolated from the Dendrobium genus for the first time, and compounds 2, 5, 7, 912, 14, 15, 18, 21 and 22 were originally obtained from D. moniliforme.  相似文献   

20.
The alkylation of 5-(β-dimethylaminoethyl)tetrazole (1) with dimethyl sulfate afforded 5-(β-dimethylaminoethyl)-1-methyltetrazole (2) and 5-(β-dimethylaminoethyl)-2-methyltetrazole (3). The exhaustive alkylation of compounds 2 and 3 at the terminal dimethylamino group gave 1-methyl-(4) and 2-methyl-5-(β-trimethylammonioethyl)tetrazole (5) methyl sulfates. The proton elimination from the α-methylene (with respect to the tetrazole cycle) groups of the quaternary ammonium cations of salts 4 and 5 by the action of a base leads to the corresponding zwitterions 4 ± and 5 ±, which in the rate-determining step undergo the cleavage of the nitrogen—carbon bond with the formation of 1-methyl-5-vinyl- (6) and 2-methyl-5-vinyltetrazole (7). The true constant of the transformation of zwitterion 4 ± into tetrazole 6 is 21 times higher than that for the transformation of zwitterion 5 ± into tetrazole 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号