首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ma Q  Su XG  Wang XY  Wan Y  Wang CL  Yang B  Jin QH 《Talanta》2005,67(5):1029-1034
The mouse immunoglobulin G (mouse IgG) as a kind of bio-molecule was labeled with two different luminescent colloidal semiconductor quantum dots (QDs), green-emitting CdTe quantum dots and red-emitting CdTe quantum dots in this work. As a result of the fluorescence resonance energy transfer (FRET) between the two different sizes nanoparticles with mouse IgG as the binding bridge, a significant enhancement of the emission of the red-emitting CdTe quantum dots and the corresponding quenching of the emission of green-emitting CdTe quantum dots were observed. The relationship between the concentration of the mouse immunoglobulin G and the fluorescence intensity ratio (Ia/Id) of acceptors and donors was studied also. Under optimal conditions, the calibration graph is linear over the range of 0.1–20.0 mg/L mouse IgG.  相似文献   

2.
Nanoparticles consisting of a derivative of the blue-emitting conjugated polymer polyfluorene doped with green-, yellow-, and red-emitting conjugated polymers were prepared by a reprecipitation method. The nanoparticles can be described as a system of densely packed chromophores that exhibit efficient energy transfer from the host to the dopant polymers. Fluorescence quenching analysis of the host polymer as a function of the dopant concentration indicates that one energy acceptor molecule can effectively quench 90% of the fluorescence of a nanoparticle consisting of 100-200 host conjugated polymer molecules. A nanoparticle energy transfer model was developed that successfully describes the quenching behavior of a small number of highly efficient energy acceptors per nanoparticle. The fluorescence brightness of the blended polymer nanoparticles was determined to be much higher than that of inorganic quantum dots and dye-loaded silica particles of similar dimensions. The combination of high fluorescence brightness and tunable fluorescence of these blended nanoparticles is promising for ultrasensitive fluorescence-based assays.  相似文献   

3.
In this study, anti-Vibrio parahaemolyticus polyclonal and monoclonal antibodies were prepared through intradermal injection immune and lymphocyte hybridoma technique respectively. CdTe quantum dots (QDs) were synthesized at pH 9.3, 98 °C for 1 h with stabilizer of 2.7:1. The fluorescence intensity was 586.499, and the yield was 62.43 %. QD probes were successfully prepared under the optimized conditions of pH 7.4, 37 °C for 1 h, 250 μL of 50 mg/mL EDC?·?HCl, 150 μL of 4 mg/mL NHS, buffer system of Na2HPO4-citric acid, and 8 μL of 2.48 mg/mL polyclonal antibodies. As gold nanoparticles could quench fluorescence of quantum dots, the concentration of V. parahaemolyticus could be detected through measuring the reduction of fluorescence intensity in immune sandwich reaction composed of quantum dot probe, gold-labeled antibody, and the sample. For pure culture, fluorescence intensity of the system was proportional with logarithm concentration of antigen, and the correlation coefficient was 99.764 %. The fluorescence quenching immunoassay based on quantum dots is established for the first time to detect Vibrio parahaemolyticus. This method may be used as rapid testing procedure due to its high simplicity and sensitivity.  相似文献   

4.
An ultra-sensitive detection strategy for prion protein is proposed based on the long range resonance energy transfer (LrRET) from quantum dots (QDs) to the surface of gold nanoparticles (AuNPs), in which process energy donor-acceptor separation distance ranges from 9 to 22 nm.  相似文献   

5.
6.
The influence of gold nanoparticles on the efficiency of nonradiative resonance energy transfer between InP@ZnS quantum dots composed of nanoclusters, a new type of organized structures consisting of hydrophobic quantum dots and gold nanoparticles, has been experimentally studied.  相似文献   

7.
《Analytical letters》2012,45(12):2048-2060
A Salmonella typhimurium (S. typhimurium) biosensor based on a fluorescence resonance energy transfer between upconversion and gold nanoparticles is reported. NaYF4:Yb,Er nanoparticles were synthesized and modified with a S. typhimurium target DNA complementary sequence to form the sensor. Gold nanoparticles were modified with a S. typhimurium target DNA complementary sequence to constitute the quenching probe. In the presence of S. typhimurium target DNA, gold and upconversion nanoparticles formed a sandwich complex, and the upconversion fluorescence resonance energy transfer occurred. Under the optimal conditions, the relative fluorescence was proportional to the concentration of S. typhimurium target DNA in the range of 0.001 pmol/L to 1 pmol/L with a limit of detection of 1 fM. S. typhimurium was detected from 30 cfu/mL to 5150 cfu/mL with a detection limit of 3 cfu/mL. The procedure was successfully applied to determine S. typhimurium in milk and validated by a traditional plate counting method. The developed upconversion fluorescence resonance energy transfer method is simple, fast, sensitive, specific, and incorporates nanomaterials in biosensor design.  相似文献   

8.
The photoluminescence (PL) of CdSe quantum dots (QD) in aqueous media has been studied in the presence of gold nanoparticles (NP) with different shapes. The steady state PL intensity of CdSe QD (1.5-2 nm in size) is quenched in the presence of gold NP. Picosecond bleach recovery and nanosecond time-resolved luminescence measurements show a faster bleach recovery and decrease in the lifetime of the emitting states of CdSe QD in the presence of quenchers. Surfactant-capped gold nanorods (NR) with aspect ratio of 3 and surfactant-capped and citrate-capped nanospheres (NS) of 12 nm diameter were used as quenchers in order to study the effect of shape and surface charge on the quenching rates. The Stern-Volmer kinetics model is used to examine the observed quenching behavior as a function of the quencher concentration. It was found that the quenching rate of NR is more than 1000 times stronger than that of NS with the same capping material. We also found that the quenching rate decreases as the length of the NR decreases, although the overlap between the CdSe emission and the NR absorption increases. This suggests that the quenching is a result of electron transfer rather than long-range (Forster-type) energy transfer processes. The quenching was attributed to the transfer of electron with energies below the Fermi level of gold to the trap holes of CdSe QD. The observed large difference between NR and NS quenching efficiencies was attributed to the presence of the [110] facets only in the NR, which have higher surface energy.  相似文献   

9.
Peptide-coated quantum dot-photosensitizer conjugates were developed using novel covalent conjugation strategies on peptides which overcoat quantum dots (QDs). Rose bengal and chlorin e6, photosensitizers (PSs) that generate singlet oxygen in high yield, were covalently attached to phytochelatin-related peptides. The photosensitizer-peptide conjugates were subsequently used to overcoat green- and red-emitting CdSe/CdS/ZnS nanocrystals. Generation of singlet oxygen could be achieved via indirect excitation through F?rster (fluorescence) resonance energy transfer (FRET) from the nanocrystals to PSs, or by direct excitation of the PSs. In the latter case, by using two color excitations, the conjugate could be simultaneously used for fluorescence imaging and singlet oxygen generation. Singlet oxygen quantum yields as high as 0.31 were achieved using 532-nm excitation wavelengths.  相似文献   

10.
The interaction between water-soluble zinc sulfide quantum dots (ZnS QDs) and selenite ion was investigated by photoluminescence method. The water-soluble ZnS QDs were synthesized using a simple and fast procedure based on the co-precipitation of nanoparticles in an aqueous solution in the presence of 3-mercaptopropionic acid (MPA), as the capping agent. Fluorescence intensity for MPA–ZnS QDs, with a strong fluorescent emission at about 430 nm, decreased in the presence of selenite. The influence of the effective parameters including pH and temperature was investigated. The results showed that under the optimum conditions, the fluorescence intensity change of QDs was linearly proportional to the selenite concentration in the range 4.0 × 10?5–7.2 × 10?4 mol L?1. Moreover, the quenching mechanism was discussed to be a static quenching procedure.  相似文献   

11.
This work reports a new experimental methodology for the synthesis of ultra small zinc sulfide and iron doped zinc sulfide quantum dots in aqueous media. The nanoparticles were obtained using a simple procedure based on the precipitation of ZnS in aqueous solution in the presence of 2-mercaptoethanol as a capping agent, at room temperature. The effect of Fe(3+) ion concentration as dopant on the optical properties of ZnS was studied. The size of quantum dots was determined to be about 1nm, using scanning tunneling microscopy. The synthesized nanoparticles were characterized by X-ray diffraction, UV-Vis absorption and photoluminescence emission spectroscopies. The presence and amount of iron impurity in the structure of Zn((1-x))Fe(x)S nanocrystals were confirmed by atomic absorption spectrometry. A blue shift in band-gap of ZnS was observed upon increasing incorporation of Fe(3+) ion in the iron doped zinc sulfide quantum dots. The photoluminescence investigations showed that, in the case of iron doped ZnS nanoparticles, the emission band of pure ZnS nanoparticles at 427nm shifts to 442nm with appearance of a new sharp emission band around 532nm. The X-ray diffraction analysis indicated that the iron doped nanoparticles are crystalline, with cubic zinc blend structure, having particle diameters of 1.7±022nm. Finally, the interaction of the synthesized nanoparticles with bovine serum albumin was investigated at pH 7.2. The UV-Vis absorption and fluorescence spectroscopic methods were applied to compare the optical properties of pure and iron doped ZnS quantum dots upon interaction with BSA. It was proved that, in both cases, the fluorescence quenching of BSA by the quantum dots is mainly a result of the formation of QDs-BSA complex in solution. In the steady-state fluorescence studies, the interaction parameters including binding constants (K(a)), number of binding sites (n), quenching constants ( [Formula: see text] ), and bimolecular quenching rate constants (k(q)) were determined at three different temperatures and the results were then used to evaluate the corresponding thermodynamic parameters ΔH, ΔS and ΔG.  相似文献   

12.
To detect trace trinitrotoluene (TNT) explosives deposited on various surfaces instantly and on-site still remains a challenge for homeland security needs against terrorism. This work demonstrates a new concept and its utility for visual detection of TNT particulates on various package materials. The concept takes advantages of the superior fluorescent properties of quantum dots (QDs) for visual signal output via ratiometric fluorescence, the feasibility of surface grafting of QDs for chemical recognition of TNT, and the ease of operation of the fingerprint lifting technique. Two differently sized CdTe QDs emitting red and green fluorescences, respectively, have been hybridized by embedding the red-emitting one in silica nanoparticles and covalently linking the green-emitting one to the silica surface, respectively, to form a dual-emissive fluorescent hybrid nanoparticle. The fluorescence of red QDs in the silica nanoparticles stays constant, whereas the green QDs functionalized with polyamine can selectively bind TNT by the formation of Meisenheimer complex, leading to the green fluorescence quenching due to resonance energy transfer. The variations of the two fluorescence intensity ratios display continuous color changes from yellow-green to red upon exposure to different amounts of TNT. By immobilization of the probes on a piece of filter paper, a fingerprint lifting technique has been innovated to visualize trace TNT particulates on various surfaces by the appearance of a different color against a yellow-green background under a UV lamp. This method shows high selectivity and sensitivity with a detection limit as low as 5 ng/mm(2) on a manila envelope and the attribute of being seen with the naked eye.  相似文献   

13.
《Analytical letters》2012,45(16):2747-2760
CdTe@CdS quantum dots, cationic polyelectrolyte poly-diallyldimethylammonium chloride, and anionic polyelectrolyte polyacrylic acid were assembled on the surface of silica nanoparticles based on the electrostatic layer-by-layer self-assembly to prepare fluorescent composite nanoparticles. Transmission electron microscopy showed that the particles had a uniform size distribution (approximately 70 nm) and good monodispersity. The fluorescence shielding effect of the silica shell was reduced and the assembled quantum dots were well protected by the sandwich structure. The nanoparticles provided strong fluorescence, high stability for storage, and low photobleaching and leakage. Furthermore, they possessed high fluorescence stability and high-concentration staining for cytoplasm, which enabled them to be used for sensitive cellular imaging analysis. Because of the presence of numerous carboxyl groups, they have potential application for biolabeling and bioanalysis.  相似文献   

14.
Incorporation of semiconductor nanoparticles into molecularly imprinted polymer provides a sensor material which can be easily shaped and with better selectivity because the bound template would quench the photoluminescence (PL) emission of quantum dots significantly. In this work, artificial receptors of various templates were synthesized with functional monomers such as methacrylic acid (MAA), semiconductor like CdSe/ZnS core-shell derivatized with 4-vinylpyridine and ethylene glycol dimethacrylic acid as the cross-linker. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and template molecules. The photoluminescence emission is unaffected upon incubation of analyte with the blank control polymer.  相似文献   

15.
A multiplexed assay strategy was developed for the detection of nucleic acid hybridization. It is based on fluorescence resonance energy transfer (FRET) between gold nanoparticles (AuNPs) and multi-sized quantum dots (QDs) deposited on the surface of silica photonic crystal beads (SPCBs). The SPCBs were first coated with a three-layer primer film formed by the alternating adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrensulfonate). Probe DNA sequences were then covalently attached to the carboxy groups at the surface of the QD-coated SPCBs. On addition of DNA-AuNPs and hybridization, the fluorescence of the donor QDs is quenched because of the close proximity of the AuNPs. However, the addition of target DNA causes a recovery of the fluorescence of the QD-coated SPCBs, thus enabling the quantitative assay of hybridized DNA. Compared to fluorescent dyes acting as acceptors, the use of AuNPs results in much higher quenching efficiency. The multiplexed assay displays a wide linear range, high sensitivity, and very little cross-reactivity. This work, where such SPCBs are used for the first time in a FRET assay, is deemed to present a new and viable approach towards high-throughput multiplexed gene assays.
Figure
A novel fluorescence energy transfer system was constructed for the multiplexed hybridization assay using gold nanoparticles and quantum dot conjugates on silica photonic crystal beads  相似文献   

16.
Kim YS  Jurng J 《The Analyst》2011,136(18):3720-3724
We developed a homogeneous fluorescence assay for multiplex detection based on the target induced conformational change of DNA aptamers. DNA aptamers were immobilized on quantum dots (QDs), and QDs conjugated ssDNA was adsorbed on the surface of gold nanoparticles (AuNPs) by electrostatic interaction between uncoiled ssDNA and the AuNPs. Subsequently the fluorescence of QDs was effectively quenched by the AuNPs due to fluorescence resonance energy transfer (FRET) of QDs to AuNPs. In the presence of targets, the QDs conjugated aptamers were detached from AuNPs by target induced conformational change of aptamers, consequently the fluorescence of the QDs was recovered proportional to the target concentration. In this study, three different QD/aptamer conjugates were used for multiplex detection of mercury ions, adenosine and potassium ions. In a control experiment, all of the three targets were simultaneously detected with high selectivity.  相似文献   

17.
《Analytical letters》2012,45(14):2195-2207
Copper-doped zinc selenide quantum dots modified with mercaptopropionic acid were prepared. The fluorescence quenching of the quantum dots was directly proportional to sparfloxacin concentration. A novel method was established to determine sparfloxacin using the copper-doped zinc selenide quantum dots as fluorescent probes. The interaction between the quantum dots and sparfloxacin was investigated by fluorescence and absorption spectroscopies. A linear relationship was obtained between the quenched fluorescence and sparfloxacin concentration from 1 × 10?6 to 1.8 × 10?5 moles per liter in KH2PO4-Na2HPO4 buffer at pH 7.5 using copper-doped zinc selenide quantum dots at 2.9 × 10?6 moles per liter. The limit of detection for sparfloxacin was 2.4 × 10?9 moles per liter. The method was used for the determination of sparfloxacin in tablets and water with satisfactory results.  相似文献   

18.
徐之冀  严拯宇  祁争健  查隽 《化学通报》2016,79(12):1173-1177
在水溶液中,量子点与有机荧光染料之间可能发生荧光共振能量转移(FRET)。本文以发射波长470nm的Cd S量子点为供体,曙红Y为受体,建立了Cd S量子点-曙红Y的FRET体系,研究了该体系的FRET参数。该体系受体供体数目比为8,猝灭效率为45.6%,增强效率为20.1%;供体-受体间的距离为4.4nm;临界能量转移距离为2.4nm。  相似文献   

19.
In this paper we describe the fabrication and characterization of new liposome encapsulated quantum dot–fluorescence resonance energy transfer (FRET)-based probes for monitoring the enzymatic activity of phospholipase A2. To fabricate the probes, luminescent CdSe/ZnS quantum dots capped with trioctylphosphine oxide (TOPO) ligands were incorporated into the lipid bilayer of unilamellar liposomes with an average diameter of approximately 100 nm. Incorporating TOPO capped quantum dots in liposomes enabled their use in aqueous solution while maintaining their hydrophobicity and excellent photophysical properties. The phospholipid bilayer was labeled with the fluorophore NBD C6-HPC (2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexa decanoyl-sn-glycero-3-phosphocholine). The luminescent quantum dots acted as FRET donors and the NBD dye molecules acted as FRET acceptors. The probe response was based on FRET interactions between the quantum dots and the NBD dye molecules. The NBD dye molecules were cleaved and released to the solution in the presence of the enzyme phospholipase A2. This led to an increase of the luminescence of the quantum dots and to a corresponding decrease in the fluorescence of the NBD molecules, because of a decrease in FRET efficiency between the quantum dots and the NBD dye molecules. Because the quantum dots were not attached covalently to the phospholipids, they did not hinder the enzyme activity as a result of steric effects. The probes were able to detect amounts of phospholipase A2 as low as 0.0075 U mL?1 and to monitor enzyme activity in real time. The probes were also used to screen phospholipase A2 inhibitors. For example, we found that the inhibition efficiency of MJ33 (1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol) was higher than that of OBAA (3-(4-octadecyl)benzoylacrylic acid).  相似文献   

20.
ZnS and Co-doped ZnS nanoparticles have been prepared by simple chemical precipitation method. Zinc acetate, sodium sulfide, and cobalt nitrate have been used as precursors for the preparation of Co-doped ZnS quantum dots. The X-ray diffraction results revealed that the undoped and Co-doped ZnS quantum dots exhibit hexagonal structure. The average grain size of quantum dot was found to lie in the range of 2.6–3.8 nm. The surface morphology has been studied using scanning electron microscope. The compositional analysis results confirm the presence of Co, Zn and S in the sample. The optical properties of undoped and Co-doped ZnS quantum dots have been studied using absorption spectra. TEM results show that undoped and Co-doped ZnS nanoparticles exhibit a uniform size distribution with average size of 2.5–3.4 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号