首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, natural deep eutectic solvents have been favored greatly due to their environment friendly, mild biological toxicity and simple biodegradability. Natural deep eutectic solvents gradually applied for the extracting bioactive compounds from natural products efficiently. In this study, 20 natural deep eutectic solvents were prepared and their physical and chemical properties were tested. The ultrasonic-assisted extraction method was used to extract flavonoids from Trollius ledebouri and high-performance liquid chromatography-ultraviolet was applied to examine two main bioactive flavonoids (orientin and vitexin). Compared with traditional solvents (water and 60% ethanol solution), natural deep eutectic solvents composed of L(-)-proline and levulinic acid (molar ratio 1:2) show a super extraction efficiency. On this basis, the response surface method was used to optimize the extraction temperature, extraction time, water contents, and solid–liquid ratio. As a consequence, the extraction temperature 60℃, extraction time 18 min, water content 14% (v/v), and the solid–liquid ratio 48 mL·g−1 were chosen as the best extraction process. This study shows that natural deep eutectic solvents can effectively extract flavonoids from T. ledebouri, laying a foundation for the further application of natural deep eutectic solvents to extract bioactive compounds from natural products.  相似文献   

2.
ABSTRACT

A synthesis of two series of 3-substituted quinazolinones was performed utilizing a green chemistry approach, deep eutectic solvents and microwaves, namely. 2-Methyl-3-substituted-quinazolin-4(3H)-one derivatives were synthesized in a two-step reaction, using choline chloride:urea deep eutectic solvent (DES). 3-Substituted-quinazolin-4(3H)-ones were synthesized in one-pot one-step reaction of anthranilic acid, amines and orthoester in a microwave reactor. For the synthesis of 2-methyl-3-substituted-quinazolin-4(3H)-ones, first conventional synthesis of benzoxazinone, as an intermediate, was performed. Further, benzoxazinone in reaction with corresponding amines, in choline choline:urea deep eutectic solvent, furnished desired compounds. These procedures are based on green principles with the aim of developing synthetic routes for the potential antitumor agents. All compounds were characterized by LC/MS, 1H NMR and 13C NMR spectral techniques. Compound 1 bearing trifluoromethoxyphenyl group showed promising activity against HuT-78 cell line with IC50 of 51.4?±?5.1?µM.  相似文献   

3.
In recent years, it has been found that changing ambient conditions (CO2/N2, temperature, pH) can trigger a switchable phase transition of deep eutectic solvents, and such solvents are known as responsive deep eutectic solvents. In this work, we present the development history, properties, and preparation of responsive deep eutectic solvents, followed by the application of responsive deep eutectic solvents in the extraction and separation of bioactive compounds are presented. Importantly, the mechanism of responsive deep eutectic solvents in the extraction of bioactive compounds is discussed. Finally, the challenges and prospects of responsive deep eutectic solvents in the extraction and separation of bioactive compounds are proposed. Responsive deep eutectic solvents are considered green and efficient solvents. Some methods for extraction and separation of bioactive compounds by responsive deep eutectic solvents can increase the possibility of recycling the deep eutectic solvents, and provide higher efficiency in the extraction and separation field. It is hoped that this will provide a reference for the green and sustainable extraction and separation of various bioactive compounds.  相似文献   

4.
Headspace-solvent microextraction (HS-SME) was developed as a solvent-minimized extraction technique, but few studies have examined the applications of deep eutectic solvents (DESs) to the HS-SME of bioactive compounds. In this study, HS-SME was developed for the extraction of bioactive compounds using DESs as extraction solvents. DESs, which were prepared by mixing choline chloride (ChCl) with ethylene glycol (EG) at different ratios, were applied to the extraction of three terpenoids from Chamaecyparis obtusa leaves by HS-SME. The ChCl/EG ratio in the DESs, HS-SME conditions, such as the extraction temperature and extraction time, and sample/DES ratio were optimized. All extracts were analyzed by GC. Under optimized conditions, the limits of detection were 2.006 ng mL?1 for linalool, 3.150 ng mL?1 for α-terpineol and 2.129 ng mL?1 for terpinyl acetate. The relative standard deviations were in the range of 2.1–6.8 %. The recoveries of the three terpenoids were in the range of 79.4–103 %. HS-SME is simple and rapid compared to heat reflux extraction and ultrasonic extraction. Moreover, DESs can be used in HS-SME for the extraction of a range of bioactive and volatile compounds.  相似文献   

5.
ABSTRACT

The parabens, which are harmful to our bodies, are primarily utilized as preservatives in medicine, personal care products and cosmetics. A novel, more efficient, fast and cheap vortex-assisted liquid phase microextraction method based on deep eutectic solvents (DESs) was developed for the determination of parabens. The microextraction conditions were optimized using these solvents and the analytical parameters of the method were determined under optimal microextraction conditions. After extraction, the chromatographic separation of parabens was undertaken using high-performance liquid chromatography-UV detection. Experimental parameters, such as DES type, DES volume, dilution solvent volume and vortex extraction time were optimized. DES6 [ChCl-Ethylene glycol (1/2)] was the most suitable DES to work in this study. Detection limits for this method of 0.053 µg mL?1 for methylparaben, 0.061 µg mL?1 for ethylparaben, 0.049 µg mL?1 for propylparaben and 0.052 µg mL?1 for butylparaben were obtained. Correlation coefficients (R2) for a concentration range of 0.1–100 µg mL?1 were higher than 0.9992 and relative standard deviation (RSD) values below 2.91% at parabens concentration of 2.5 µg mL?1 were obtained. The results of spike/recovery values of real samples were greater than 84%. When compared with other methods, the main advantages include lower LOD, short extraction time, rapidity, repeatability and simplicity.  相似文献   

6.
Natural deep eutectic solvent (NADES) has been successfully used as a green alternative for the extraction of polyphenolic compounds (phenolic) from coffee husk waste. The NADES was produced by combining b the choline chloride compound with glycerol, glucose, citric acid, and proline. Furthermore, it was characterized using FTIR with the appearance of a widening hydroxyl peak at a wave number of 3277–3364 cm?1, indicating the presence of hydrogen bond interactions. The results showed that the best composition of NADES solvent was choline chloride and proline ratio of 1:1, providing an extraction yield of 5.88 mg GAE g?1 with a polyphenol concentration in NADES of 294.02 mg/L. Optimum extraction conditions were carried out with the addition of 50 % water, extraction time of 30 min, and the ratio of sample weight to solvent volume (1:10), obtaining a yield of 6.16 mg GAE g?1 and the concentration of polyphenols in NADES of 307.81 mg/L. The effect of temperature on the extraction process can increase the extract yield under conditions at 80 °C with a yield of 10.07 mg GAE g?1 and a polyphenol concentration of 671.4 mg/L. The chlorogenic acid group of polyphenolic compounds was identified using HPLC at a retention time of 3.454 min with a concentration of 63 mg/L. Based on the results, NADES can be use as a green solvent for extracting active compounds from coffee husk waste. These extract can safely be applied to various medicinal and food products.  相似文献   

7.
Natural deep eutectic solvents have been used as an alternative to organic solvents for the extraction of plants metabolites, allowing for the extraction of compounds of different polarities, while being inexpensive, non‐toxic, and easy to prepare. This work presents the comparison of the chromatographic profiles by high‐performance liquid chromatography with diode‐array detection obtained from Byrsonima intermedia (Malpighiaceae) using five choline chloride‐based natural deep eutectic solvents, in addition to the most used traditional extraction solvents, methanol/water 7:3 and ethanol/water 7:3 v/v. A reference extract was used to tentatively identify compounds by high‐performance liquid chromatography with tandem mass spectrometry. The water content appeared to be important for the extraction efficiency and the mixture choline chloride/glycerol was shown to be the best candidate for efficiently extracting this matrix when compared with the traditional extraction media in addition to being far greener as shown by the environmental analysis tool. Seven phenolic compounds (digalloyl quinic acid, proanthocyanidin dimer, galloylproanthocyanidin dimer, quercetin‐O‐hexoside, galloyl quercetin hexoside, quercetin‐O‐pentoside, and galloyl quercetin pentoside) were tentatively identified in all extracts. Moreover, the influence of these solvents on the antioxidant activity of the extracts was studied and the results for choline chloride/glycerol extracts were very similar to that of the traditional extraction solvents.  相似文献   

8.
An ion-pair high-performance liquid chromatography with ultraviolet detection method for the determination of cyromazine, melamine and its biodegradation products (ammeline, ammelide, cyanuric acid and biuret) was developed. C18 column was utilised to separate the six analytes with a mobile phase consisting of perchloric acid-ammonia solution and acetonitrile, under gradient elution and variable flow rate. The detection wavelengths were 205 nm for cyanuric acid and biuret and 222 nm for cyromazine, melamine, ammeline and ammelide. For analysis of sediment samples, the extraction solution containing acetonitrile, ammonia and water (80:10:10 by volume) was used to extract the analytes from sediment matrix. Using the extraction method for the spiked sediment sample, high linearity of matrix-matched standard curve could be obtained for the six analytes. The method detection limit was 0.1 μg g?1 for melamine and cyromazine, 0.2 μg g?1 for ammeline and ammelide, 1.2 μg g?1 for cyanuric acid and 1.0 μg g?1 for biuret in sediment matrix. The recoveries of these compounds were 70.1–98.3% and the relative standard deviations were 0.5–4.4%. Finally, the proposed method was successfully applied to the analysis of the sediment sample near the wastewater outlet of a melamine-producing factory.  相似文献   

9.
Green and enhanced extraction of bioactive ingredients from medicinal plants has become a hot research field, and deep eutectic solvents have been considered as a novel kind of sustainable solvents in the extraction process. In this study, hydrogen bond acceptor (choline chloride, etc.) and hydrogen bond donor (l ‐malic acid, etc.) were used to prepare different kinds of deep eutectic solvents to extract coumarins from Cortex Fraxini. The extraction conditions, including the composition and moisture content of deep eutectic solvents, extraction time, and liquid‐solid ratio, were systematically optimized basing on the extraction yield of coumarins. To further investigate the extraction mechanism, Fourier transform infrared spectroscopy was performed, and the microstructures of Cortex Fraxini powders were observed before and after extraction using scanning electron microscope. Results showed that the novel ultrasound‐assisted extraction with conditions of deep eutectic solvent containing betaine/glycerin (1:3), aqueous solution (20%), solid‐liquid ratio (15 mg/mL), and extraction time (30 min) exhibited the best extraction yields for the four target coumarins and much better extraction efficiency than with conventional solvent extractions. This suggests that the new ultrasound‐assisted deep eutectic solvent extraction could be used as a green and high‐efficient approach for extraction of the main coumarins from Cortex Fraxini.  相似文献   

10.
《Analytical letters》2012,45(2):188-202
Abstract

Air assisted dispersive liquid–liquid microextraction (AA-DLLME) using hydrophilic–hydrophobic deep eutectic solvents (DES) was developed for the simultaneous isolation of monosaccharides and amino acids with wide ranges of polarities from kelp using high performance liquid chromatography (HPLC). A response surface methodology (RSM) on a Box–Behnken design (BBD) model was employed to identify the optimal extraction parameters. Air assisted dispersive liquid-phase microextraction performed using the optimum deep eutectic solvent system, five push–pull cycles, a ratio of solid to liquid equal to 3?mg·mL?1, 10% (w/v) NaCl, and a centrifugation time of 6?min provided the best analytical performance. The optimal extracted concentrations of d-(+)-galactose, l-(-)-fucose, dl-tyrosine, and dl-valine in kelp were 16.7?±?0.2, 8.6?±?0.2, 2.6?±?0.1, and 1.6?±?0.1?mg·g?1, respectively. The method recoveries for d-(+)-galactose, l-(-)-fucose, dl-tyrosine, and dl-tyrosine were from 87 to 102%, 84 to 103%, 87 to 104%, and 85 to 103%. The relative standard deviations (RSDs) (n?=?4) for the intra-day and inter-day determinations were <6.17%.  相似文献   

11.
An effective method utilising pressurised fluid extraction (PFE) to simultaneously extract polycyclic aromatic hydrocarbons (PAHs) and their polar oxidation products from atmospheric particulate matter (PM) is presented. The PFE method is advantageous over the traditional Soxhlet extraction due to its lower solvent consumption (9 mL compared to 90 mL) and shorter extraction time (15 min versus 18 h). Seventy compounds including PAHs and polar PAH oxidation products containing carbonyl (oxy-PAHs), hydroxyl (hydroxy-PAHs), and carboxylic acid (carboxy-PAHs) groups were targeted in the extraction of two different PM matrices: wood smoke (WS) and diesel exhaust (DE) PM. The PFE method was optimised and then compared to Soxhlet extraction for both PM matrices. The overall amounts of PAHs and their derivatives extracted from WS PM were slightly higher for the optimised PFE method (1849 ± 21 and 1863 ± 25 µg g?1 with dichloromethane (DCM) and methanol (MeOH), respectively) than those obtained with Soxhlet extraction (1726 ± 33 and 1769 ± 22 µg g?1 with DCM and MeOH, respectively). For DE PM (standard reference material (SRM) 2975) the overall amounts extracted by both methods were similar (average of 165 ± 6 µg g?1), agreeing with previously published values. The detailed evaluation of extraction efficiencies for WS PM showed similar amounts for unfunctionalised PAHs (1100 µg g?1) for both methods and solvents. For DE PM the mass yields for PAHs using PFE with DCM (62 ± 1 µg g?1) were the highest and nearly 20% higher than those obtained with MeOH (53 ± 2 µg g?1). The total mass yields of carboxy and hydroxy-PAHs from WS PM were also similar (412 ± 18 and 407 ± 11 µg g?1) for PFE and Soxhlet with MeOH, and higher than when DCM was used (371 ± 5 and 379 ± 12 µg g?1 for PFE and Soxhlet, respectively). For both matrices, the PFE yields for oxy-PAHs were higher than those obtained with Soxhlet.  相似文献   

12.
In the present study, using chalcone as a lead compound, a series of its derivatives (compounds 130) were designed and synthesised. Their activity of anti-pathogenic fungi of plants has been evaluated. It is found that these compounds have good antifungal activity against Sclerotinia sclerotiorum, Helminthosprium maydis, Botrytis cinerea, Rhizoctonia solani and Gibberella zeae. Among them, the inhibition of growth for compound 30 against S. sclerotiorum showed 89.9%, with the median effective concentrations (EC50) of 15.4 μg mL? 1. The inhibition of growth for compounds 28, 29 and 30 at a concentration of 100 μg mL? 1 against H. maydis is 90.3%, 90.7% and 91.1%, with EC50 of 15.1, 18.3 and 18.1μg mL? 1, respectively.  相似文献   

13.
The excretions/secretions from the maggot of Chrysomyis megacephala Fabricius are traditionally used to treat serious infections in China. In this study, bioassay-guided fractionation led to the isolation of three novel antibacterial compounds (13), including important fluorinated compounds (3 and 5), together with other nine known compounds from 70% methanol extract of C. megacephala. The structures of the new compounds were elucidated by NMR spectroscopic analysis and high-resolution mass spectroscopy. The antibacterial activities of the isolated compounds were evaluated using agar disc diffusion method. New compounds 1 and 2 exhibited moderate activity against Bacillus subtilis with a minimum inhibitory concentration (MIC) of 250 μg mL? 1. The most active compounds 3 and 5 displayed a broad spectrum of antimicrobial activity with an MIC of 125 μg mL? 1 against G+ and G bacteria. The structure of the above-mentioned novel compounds and their antimicrobial activities are herein reported for the first time from the natural product of insects.  相似文献   

14.
Antioxidant activities of eight indigenous cyanobacterial strains belonging to the genera Oscillatoria, Chroococcidiopsis, Leptolyngbya, Calothrix, Nostoc and Phormidium were studied in relation with their phenolic and flavonoid contents, ranging 3.9–12.6 mg GAE g?1 and 1.7–3.44 mg RE g?1. The highest activities were shown by Leptolyngbya sp. SI-SM (EC50 = 63.45 and 67.49 μg mL?1) and Calothrix sp. SI-SV (EC50 = 65.79 and 69.38 μg mL?1) calculated with ABTS and DPPH assays. Significant negative correlations were seen between total phenolic and flavonoid contents and the antioxidant activities in terms of EC50 values. Furthermore, HPLC detected 15 phenolic compounds with total concentrations ranging from 277.3 to 829.7 μg g?1. The prevalent compounds in most of the strains were rutin, tannic acid, orcinol, phloroglucinol and protocatechuic acid. Cyanobacterial strains showed high potential as a good source of phenolic compounds with potent antioxidative potential which could be beneficial for food, cosmetic and pharmaceutical industries.  相似文献   

15.
Honey is a sweet product made by bees using nectar from flowers. Concentrations of Ca, K, Mg, Fe, Zn, Mn, Cu, Pb and Cd were determined in 13 honey samples from the selected regions around the world. Levels of Ca, Mg, Cu, Fe, Zn and Mn were measured using flame atomic absorption spectrometry (FAAS). Potassium concentration was determined via flame photometry. Concentrations of Cd and Pb were determined using the electrothermal technique (ETAAS). It was estimated that the examined samples of honey from Greece, Turkey, Spain, Poland, Mexico, Argentina and Italy were of good quality in terms of metal concentrations (compliant with the norms referring to food products – WHO, Fifty-third Report of the joint FAO/WHO Expert Committee on Food Additives; Technical Report Series 776, Geneva), although the analysed samples were not free of heavy metals. The concentrations of the elements in the honey samples ranged from 2.38 to 9.31 μg · g?1 for Zn, from 3.86 to 35.10 μg · g?1 for Fe, from 0.19 to 21.64 μg · g?1 for Mn, from 49.53 to 1006.90 μg · g?1 for Ca, from 388.25 to 4761.50 μg · g?1 for K and from 0.20 to 1.53 μg · g?1 for Cu and regarding heavy metals from 0.11 to 2.78 μg · g?1 for Pb and from 0.02 to 0.44 μg · g?1 for Cd. According to these results it was found that the concentrations of heavy metals in the honey samples (except for alfalfa honey and eucalyptus honey from Italy) were under the acceptable limits for foods set out by the FAO/WHO. It was confirmed that the application of chemometric tools supports the extraction of significant information from analytical data, even though the availability of samples is not fully sufficient (this problem is often encountered in environmental analyses).  相似文献   

16.
In recent years, attention has been turned finding new sources of phenolic compounds, antioxidant molecules, main by-products from the agri-food chain like barley malt rootlets (BMRs). Traditionally, phenolic compounds are extracted from food matrices using different procedures, for example, solid–liquid, liquid–liquid, or solid-phase extraction techniques employing organic solvents. With the advent of green chemistry, attention has been paid to the search for green, nontoxic, inexpensive, and nonflammable solvents and the natural deep eutectic solvents (NADESs) respect these characteristics. The aim of this project was to develop and optimize an environmentally friendly, inexpensive, and rapid extraction method for phenolic compounds from BMRs using natural DESs as extractive solvents. Several natural DESs were tested as extractive solvents and, among them, the best results in terms of total phenolic content were obtained using a choline chloride-malic acid (1:2 molar ratio)-based mixture. Box–Behnken experimental design guaranteed the extraction of 9.51 ± 0.83 gallic acid equivalent/g of BMRs, under the following optimal extraction conditions: 1:21 solid-to-liquid ratio, 80°C as extraction temperature, 43 min as the time of extraction, and 29% as a percentage of added water in the NADESs. Phenolic acids and flavonoids were detected in the BMRs extract through HPLC-PDA/MS analysis.  相似文献   

17.
The utilization of deep eutectic solvent as an alternative and environmentally friendly option has gained significant attention. This study first proposed a series of benzylammonium chloride based-deep eutectic systems for the extraction of bioactive compounds from Gardenia jasminoides Ellis. Through the implementation of response surface methodology, the optimal solvent was determined to be dodecyldimethylbenzylammonium chloride–levulinic acid (1:3, mol/mol) with 35% (v/v) water, specifically tailored to extract geniposide, genipin-1-β-d -gentiobioside, crocin-1, and crocin-2 from gardenia fruits with the ratio of solid to liquid of 1:20 at 86°C for 16 min. Their total extraction yields could reach 70.6 mg/g, outperforming those obtained by other solvents and corresponding techniques. Furthermore, the eutectic system was retrieved after first-cycle extraction, and then applied in the subsequent extraction progress, yielding a consistent extraction efficiency of 97.1%. As compared to previous traditional methods, a quick, high-yielding, and green extraction procedure was achieved through simple heating settings that did not constrain the instrument. Therefore, dodecyldimethylbenzylammonium chloride–levulinic acid could serve as a sustainable and reusable solvent for efficient extraction of natural bioactive compounds from plant-based raw materials. The application of deep eutectic solvents has demonstrated their potential as designable solvents with stronger extraction capabilities than traditional organic solvents.  相似文献   

18.
Two new doubly methoxido-bridged MnIII dinuclear complexes, [MnIII(mphp)(μ-OCH3)(CH3OH)]2·2CH3OH (1) and ([MnIII(ahbz)(μ-OCH3)(CH3OH)]2·2CH3OH (2), have been synthesized by using the tridentate ligands H2mphp (H2mphp = 2-methyl-6-(pyrimidin-2-yl-hydrazonomethyl)-phenol) and H2ahbz (H2ahbz = N-(2-amino-propyl)-2-hydroxy-benzamide). The complexes have been characterized by single-crystal X-ray diffraction analysis and magnetic measurements. Complexes 1 and 2 have a similar dimeric molecular structure. Two [Mn(L)(CH3OH)]+ moieties (L2? = mphp2? or ahbz2?) are bridged by two μ-OCH3? groups in the axial-equatorial asymmetric manner. The coordination geometry of MnIII is an axially elongated octahedron with two oxygens of a methanol ligand and a methoxido ligand situated at the axial positions. Magnetic measurements indicate that 1 and 2 exhibit antiferromagnetic behavior with the fitting parameter of J = ?1.49(3) cm?1, D = ?1.3(1) cm?1, g = 1.98(1) and zJ′ = ?0.18(4) cm?1 for 1, and J = ?1.6(2) cm?1, D = 4.5(3) cm?1, g = 2.06(1) and zJ′ = 1.4(1) cm?1 for 2 on the basis of the spin Hamiltonian ? = ?2J?Mn1?Mn2.  相似文献   

19.
Inorganic elements are responsible for essential bodily functions, such as osmotic regulation, cardiac frequency and contractibility, blood clotting and neuromuscular excitability. The determination of inorganic elements in corporeal fluids such as blood, serum, plasma and urine is used as a monitor for a part or the whole organism; their values, then, are compared with reference interval values. In this study, the energy dispersive X-ray fluorescence spectrometry (EDXRF), applying the Fundamental Parameters method, for the determination of inorganic elements in whole blood samples from humans and laboratory animals, was used. Peripheral blood samples were collected and, before coagulation, 100 μL of sample were deposited onto Whatman No. 41 filter paper and dried, using infrared spotlight. The reference interval values for healthy Brazilian population of Na were found to be 1,788–1,826 μg g?1, of Mg 63–75 μg g?1, of P 602–676 μg g?1, of S 1,519–1,718 μg g?1, of Cl 2,743–2,867 μg g?1, of K 1,508–1,630 μg g?1, of Ca 214–228 μg g?1, of Fe 170184 μg g?1, of Cu 4–6 μg g?1 and of Zn 1–3 μg g?1. The reference interval values for golden hamster (Mesocricetus auratus) of Na were found to be 1,714–1,819 μg g?1, Mg 51–79 μg g?1, P 970–1,080 μg g?1, S 1,231–1,739 μg g?1, Cl 2,775–2,865 μg g?1, of K 1,968–2,248 μg g?1, of Ca 209–257 μg g?1, of Fe 145–267 μg g?1, of Cu 4–6 μg g?1 and of Zn 3–5 μg g?1. A comparative study between EDXRF and instrumental neutron activation analysis data was carried out and the results for both techniques are statistically equal (α = 0.05). The results contribute for the establishment of reference interval values for Na, Mg, P, S, Cl, K, Ca, Cu and Zn in the healthy Brazilian population and the referred laboratory animal species.  相似文献   

20.
The objective of this study was to set up a method to detect five compounds in fresh smashed apples by HPLC/DAD simultaneously. Different methods have been tested to control browning and ascorbic acid with ultrasonication was adopted. Methanol–water–acetic acid (30:69:1, v/v) containing 2.0 g of ascorbic acid L?1 was chosen as the extract solvent. The method effectively simplified the sample treatment compared with the traditional ways. And primarily, the results were used to identify between different varieties. The chromatographic separation was performed on an Atlantis C18 (250 mm × 4.5 mm, particle size 5 μm) with a gradient elution program using a mixture of acetonitrile and 2% aqueous acetic acid (v/v) as mobile phase within 20 min at 270 nm wavelength. The variation of the content of five compounds was gallic acid (ND ~1.81 μg g?1), protocatechuic acid (ND ~1.79 μg g?1), chlorogenic acid (13.81–189.4 μg g?1), caffeic acid (6.82–45.02 μg g?1) and rutin (0.96–18.55 μg g?1). The results could successfully be used to discriminate between different apple varieties (Gala, Fuji, Delicious, 8th Apple US, Golden Apple, Green Apple and Red Rose); chlorogenic acid and rutin being the polyphenols that contribute most to the differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号