首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

2.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

3.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

4.
Electrochemically polymerized luminol film on a glassy carbon electrode (GCE) surface has been used as a sensor for selective detection of uric acid (UA) in the presence of ascorbic acid (AA) and dopamine (DA). Cyclic voltammetry was used to evaluate the electrochemical properties of the poly(luminol) film modified electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used for surface characterizations. The bare GCE failed to distinguish the oxidation peaks of AA, DA and UA in phosphate buffer solution (pH 7.0), while the poly(luminol) modified electrode could separate them efficiently. In differential pulse voltammetric (DPV) measurements, the modified GCE could separate AA and DA signals from UA, allowing the selective determination of UA. Using DPV, the linear range (3.0×10?5 to 1.0×10?3 M) and the detection limit (2.0×10?6 M) were estimated for measurement of UA in physiological condition. The applicability of the prepared electrode was demonstrated by measuring UA in human urine samples.  相似文献   

5.
《Analytical letters》2012,45(2):175-192
ABSTRACT

The preparation and electrochemical characteristics of electrodes modified by cobalt complexes of N, N' - bis(salicylidene)-ethane -1, 2- diamine (salen) are described. A cobalt-salen polymer film modified electrode has strong electro-catalytic effects for the oxidation of ascorbic acid. The anodic peak potential of ascorbic acid shifted negatively for 400 m V. The catalytic reaction rate constant determined by rotating disk experiments is 7.08×105 mol s?1 cm3. The catalytic mechanism and the effect of film thickness are discussed. A sensitive voltammetric response for ascorbic acid was obtained covering a linear range from 1.0×10?6 to 1.0×10?3 mol-L?1 The modified electrode showed good stability and reproducibility. The electrode was used to the determination of ascorbic acid in fruit juices and showed promising results compared with conventional methods. The electro-catalytic effect of several metal-salen complexes and a similar Schiff base derivative for ascorbic acid was compared.  相似文献   

6.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

7.
《Electroanalysis》2004,16(17):1413-1418
The in‐site functionalization of 4‐aminothiophenol (4‐ATP) self‐assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4′‐mercapto‐N‐phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well‐defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0×10?6?1.25×10?4 M and 8.0×10?6?1.3×10?4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3σ) for DA and AA were found to be 1.2×10?6 M and 2.4×10?6 M, respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

8.
《Analytical letters》2012,45(1):22-33
A three-dimensional L-cysteine (L-cys) monolayer assembled on gold nanoparticles (GNP) providing simultaneous detection of uric acid (UA) and ascorbic acid (AA) was studied in this work. The cyclic voltammetry demonstrated that, at a bare glassy carbon electrode (GCE) or planar gold electrode, the mixture of UA and AA showed one overlapped oxidation peak; whereas when the electrode was modified with GNP, the oxidation peaks for UA and AA were separated. While a GNP modified electrode was further modified with L-cys monolayer (L-cys/GNP/GCE), namely, three-dimensional L-cys monolayer, a better separation for UA and AA response was obtained. Interestingly, the L-cys monolayer-modified planar gold electrode presented a block effect on the oxidation of AA, which was facilitated by the three-dimensional L-cys monolayer attributed to its distinct structure. The pH of solution presented a noticeable effect on the separation of UA and AA at GNP modified electrodes with or without L-cys monolayer. Wide concentration ranges from 2 × 10?6?1 × 10?3 M to UA and 2 × 10?6?8 × 10?4 M to AA could be obtained at L-cys/GNP/GCE.  相似文献   

9.
A novel voltammetric method using the Ppyox/NFR/Au (poly pyrrole – nuclear fast red – gold) modified electrode was developed for simultaneous measurement of various combinations of ascorbic acid (AA) and methyldopa (MDA). Polypyrrole film was prepared by incorporation of nuclear fast red (NFR) as doping anion, during the electropolymerization of pyrrole onto a gold (Au) electrode in aqueous solution using cyclic voltammetric (CV) method, and then it was overoxidized at constant potential. Differential pulse voltammetry was utilized for the measurement of both analytes using modified electrode. Well‐separated voltammetric peaks were observed for ascorbic acid (AA) and methyldopa at the Ppyox/NFR/Au modified electrodes with peak separation of 0.210 V. It has been found that under optimum condition (pH 3.0), the oxidation of AA and MDA at the surface of the electrode occurs at a potential about 260 and 50 mV less positive than unmodified Au electrode respectively. The current catalytic oxidation peaks showed a linear dependent on the concentration of AA and MDA in the range of 9.0×10?6 to 1.0×10?3 and 1.0×10?7 to 2.0×10?5 mol L?1 respectively. The detection limit of 5.8×10?6 and 5.0×10?8 mol L?1 (S/N=3) were obtained for AA and MDA respectively. The modified electrode was used for determination of AA and MDA in some real samples such as human serum and tablet.  相似文献   

10.
A simple and sensitive method for simultaneously measuring dopamine (DA), ascorbic acid (AA), and uric acid (UA) using a poly(1‐aminoanthracene) and carbon nanotubes nanocomposite electrode is presented. The experimental parameters for composite film synthesis as well as the variables related to simultaneous determination of DA, AA, and UA were optimized at the same time using fractional factorial and Doehlert designs. The use of carbon nanotubes and poly(1‐aminoanthracene) in association with a cathodic pretreatment led to three well‐defined oxidation peaks at potentials around ?0.039, 0.180 and 0.351 V (vs. Ag/AgCl) for AA, DA, and UA, respectively. Using differential pulse voltammetry, calibration curves for AA, DA, and UA were obtained over the range of 0.16–3.12×10?3 mol L?1, 3.54–136×10?6 mol L?1, and 0.76–2.92×10?3 mol L?1, with detection limits of 3.95×10?5 mol L?1, 2.90×10?7 mol L?1, and 4.22×10?5 mol L?1, respectively. The proposed method was successfully applied to determine DA, AA, and UA in biological samples with good results.  相似文献   

11.
《Electroanalysis》2006,18(3):282-290
Metallophthalocyanine (MPc) and its derivatives are well known as electrocatalysts to catalyze oxidation or reduction of some species, such as cysteine, nitric oxide. Their nanosized particles may display the potential optics, electronic, catalytic and structural properties. In this paper, carbon paste electrodes modified with nanosized cobalt phthalocyanine particles (denoted as Nano‐CoPc‐CPE) are fabricated. The electrocatalytic oxidation of dopamine (DA) and ascorbic acid (AA) on the Nano‐CoPc‐CPE was investigated by means of cyclic voltammetry. Nano‐CoPc particles perform good electrocatalytic activity to DA and AA. The anodic peak potentials of DA and AA were separated with good sensitivity in the presence of cetyltrimethylammonium bromide (CTAB). The DA and AA can be simultaneously determined by using differential pulse voltammetry. On optimal conditions, the good linear response to DA and AA was observed in the range of 3.0×10?6–1.0×10?4 M and 5.0×10?6–3.0×10?4 M with the correlation coefficient of 0.9983 and 0.9978, respectively. Moreover, 100‐fold AA did not interfere in the determination of DA. This method has been used to simultaneously determine DA and AA concentration in mixed drug samples with satisfactory results.  相似文献   

12.
A glassy carbon electrode (GCE) modified with docosyltrimethylammonium chloride (DCTMACl) is used for simultaneous determination of dopamine (DA) and ascorbic acid (AA) using differential pulse voltammetry (DPV) technique in 0.10 mol·L?1 phosphate buffer solution of pH 5.0. The cationic surfactant DCTMACl modified film has a positive charge. DA exists as the positively charged species, whereas AA is the negatively charged one in the solution. Thus, at DCTMACl film-modified GCE, the oxidation peak potential of AA shifts toward less negative potential and the peak current of AA increases a little, while the oxidation peak potential of DA shifts toward more positive potential and peak current decreases greatly in comparison with that on bare electrode. The two anodic peaks are separated around 200 mV. Under optimal conditions, the catalytic peak currents obtained from DPV increase linearly with concentrations of DA and AA in the ranges of 1.0?×?10?5 to 1.0?×?10?3?mol·L?1. This electrode has good reproducibility, high stability in its voltammetric response, and low detection limit (micromolar) for both AA and DA. The modified electrode has been applied to the determination of DA and AA in injection.  相似文献   

13.
A new sol‐gel carbon composite electrode using hexacyanoferrate (HCF)‐Th(IV) ion pair as a suitable modifier is fabricated in the present study. The Th(IV)‐HCF‐sol‐gel carbon composite electrode (THCF‐CCE) has been prepared by mixing methyl trimethoxysilan (MTMOS) sol‐gel precursor and carbon powder with ion pair and then to fix in a plastic tube. Cyclic voltammetry and chronoamperometry were employed to study the electrochemical and electrocatalytic properties of proposed electrode. The apparent charge transfer rate constant, ks, and transfer coefficient, α, for electron transfer between ion‐pair and sol‐gel CPE were calculated as 3.10 ± 0.10 s?1 and 0.52, respectively. The THCF‐CCE showed a significant electrocatalytic activity towards oxidation of ascorbic acid (AA) and dopamine (DA) in 0.1 M acidic phosphate buffer solutions (pH 3) containing KCl as a supporting electrolyte. The mean value of the diffusion coefficients for ascorbic acid and dopamine were found 4.12 × 10?5 and 4.43 × 10?5 (cm2s?1), respectively. High stability, good reproducibility, rapid response, easy surface regeneration and fabrication are the important characteristics of the proposed sensor. The resulting peaks from the electrocatalytic oxidation of AA and DA were well resolved with good sensitivity. A linear response was observed for AA and DA in the concentration range of 1 × 10?5 to 3 × 10?3 M and 4 × 10?6 to 2.2 × 10?4 M, respectively.  相似文献   

14.
It is difficult to monitor dopamine (DA) accurately with a bare glassy carbon electrode because of the interference of ascorbic acid (AA). In this paper, a method for the determination of DA in an AA solution using differential pulse voltammetry was established. Because AA loses its electrochemical activity after being oxidized, hydrogen peroxide was used to oxidize AA, and the interference of AA was completely eliminated. As a result, trace DA could be directly determined in the AA solution with a bare glassy carbon electrode. When trace DA was determined in a 1.0 mmol L?1 AA solution, there was a wide linear range from 3.0×10?8 mol L?1 to 1.0×10?5 mol L?1. The application of this method was demonstrated by the selective measurement of DA in an injection without pretreatment.  相似文献   

15.
A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a 4‐(2‐Pyridylazo)‐Resorcinol (PAR) polymer film modified glassy carbon electrode (GCE). The PAR polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of DA in a phosphate buffer solution (PBS) (pH 4.0). The linear range of 5.0×10?6–3.0×10?5 M and detection limit of 2.0×10?7 M were observed. Simultaneous detection of AA, DA and UA has also been demonstrated on the modified electrode. This work provides a simple and easy approach to selective detection of DA in the presence of AA and UA.  相似文献   

16.
A glassy carbon electrode was modified with electropolymerized film of diphenylamine sulfonic acid (DPASA). Electropolymerization was performed by cyclic voltammetry in 0.1 M KCl solution. The modified electrode showed an excellent electrocatalytic effect towards oxidation of dopamine (DA) and ascorbic acid (AA). Electrostatic interaction between the negatively charged poly(DPASA) film and either cationic DA species or anionic AA species favorably contributed to the redox response of DA and AA. Anodic peaks of DA and AA in their mixture were well separated by ca 168 and −11.8 mV. The proposed modified electrode was utilized for selective determination of dopamine in the concentration range of 5.0 × 10t7–2.0 × 10−5 M in the presence of high concentration of ascorbic acid. Detection limit was 6.5 × 10−9 M.  相似文献   

17.
《Analytical letters》2012,45(4):805-815
Abstract

This paper describes a kinetic spectrophotometric method for the determination of L‐ascorbic acid (AA) and thiols (RSH). Absorbance of Fe(II)‐phen complex formed during the reaction of AA or RSH with Fe(III)‐phen was continuously measured at 510 nm by double‐beam spectrophotometer with flow cell. For determination some thiols, the catalytic effect of Cu2+ ions was used. AA and RSH can be determined in concentration ranges from 4.0×10?6 to 4.0×10?5 M and from 8.0×10?6 to 8.0×10?5 M, respectively. The applicability of the proposed method was demonstrated by determination of chosen compounds in pharmaceutical dosage forms.  相似文献   

18.
《Electroanalysis》2006,18(12):1193-1201
A chemically modified carbon paste electrode with 2,7‐bis(ferrocenyl ethyl)fluoren‐9‐one (2,7‐BFEFMCPE) was employed to study the electrocatalytic oxidation of ascorbic acid in aqueous solution using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The diffusion coefficient (D=1.89×10?5 cm2 s?1), and the kinetic parameter such as the electron transfer coefficient, α (=0.42) of ascorbic acid oxidation at the surface of 2,7‐BFEFMCPE was determined using electrochemical approaches. It has been found that under an optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 300 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak currents show a linear dependence on the ascorbic acid concentration and linear analytical curves were obtained in the ranges of 8.0×10?5 M–2.0×10?3 M and 3.1×10?5 M–3.3×10?3 M of ascorbic acid with correlation coefficients of 0.9980 and 0.9976 in cyclic voltammetry and differential pulse voltammetry, respectively. The detection limits (2δ) were determined to be 2.9×10?5 M and 9.0×10?6 M with cyclic voltammetry and differential pulse voltammetry, respectively. This method was also examined for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

19.
本实验制备了一种新型的氮杂铜配合物修饰金电极,该电极可用于抗坏血酸的测定。采用循环伏安法和扫描电化学显微镜技术对电极进行了表征。该修饰电极可催化氧化抗坏血酸,相对于裸电极抗坏血酸在修饰电极上氧化电位移动了250mV,并且氧化电流在抗坏血酸的浓度为5.0×10−7 to 4.0×10−5 mol/L时呈线性关系,检测限为4.8×10-8 mol/L。用此方法测定抗坏血酸与文献报道的测定结果一致,这表明该电极可用作抗坏血酸测定的电化学传感器。  相似文献   

20.
《Electroanalysis》2005,17(19):1740-1745
A p‐chloranil modified carbon paste electrode was constructed and the electrochemical behavior of this electrode was studied in the aqueous solution with different pH. From the E1/2–pH diagram for this compound the values of formal potential E0' and pKa of some different redox and acid‐base couples depending on the solution pH were estimated. The diffusion coefficient, D, value for p‐chloranil was estimated 1.5×10?7 cm2 s?1. It has been shown by direct current cyclic voltammetry and double potential step chronoamperometry, that this p‐chloranil incorporated carbon paste electrode, can catalyze the oxidation of ascorbic acid in the aqueous buffered solution. Under the optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 325 mV less positive than that at an unmodified carbon past electrode. The catalytic oxidation peak currents was linearly dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 7×10?5 M–4×10?3 M of ascorbic acid with a correlation coefficient of 0.9998. The limit of detection (3σ) was determined as 3.5×10 ?5 M. This method was used as simple, selective and precise voltammetric method for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号