首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
将金纳米粒子(AuNPs)标记的大肠杆菌O157∶H7(E.coli O157∶H7)的多克隆抗体(PAb)作为二抗,采用氨基偶联法将PAb固定在传感器表面作为一抗,通过三明治方法用双通道表面等离子体子共振(SPR)传感器对E.coli O157∶H7进行检测,并与SPR直接法检测进行了比较.结果表明,直接法的检出限为103cfu/mL,线性范围为103~109cfu/mL;AuNPs增强三明治法的检出限为10 cfu/mL,线性范围为10~1010cfu/mL,灵敏度比直接法提高了100倍,且具有更宽的检测范围.本方法不仅检测时间短,而且具有良好的选择性和重现性.  相似文献   

2.
Yang L  Li Y 《The Analyst》2006,131(3):394-401
In this study, we explored the use of semiconductor quantum dots (QDs) as fluorescence labels in immunoassays for simultaneous detection of two species of foodborne pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium. QDs with different sizes can be excited with a single wavelength of light, resulting in different emission peaks that can be measured simultaneously. Highly fluorescent semiconductor quantum dots with different emission wavelengths (525 nm and 705 nm) were conjugated to anti-E. coli O157 and anti-Salmonella antibodies, respectively. Target bacteria were separated from samples by using specific antibody coated magnetic beads. The bead-cell complexes reacted with QD-antibody conjugates to form bead-cell-QD complexes. Fluorescent microscopic images of QD labeled E. coli and Salmonella cells demonstrated that QD-antibody conjugates could evenly and completely attach to the surface of bacterial cells, indicating that the conjugated QD molecules still retain their effective fluorescence, while the conjugated antibody molecules remain active and are able to recognize their specific target bacteria in a complex mixture. The intensities of fluorescence emission peaks at 525 nm and 705 nm of the final complexes were measured for quantitative detection of E. coli O157:H7 and S. Typhimurium simultaneously. The fluorescence intensity (FI) as a function of cell number (N) was found for Salmonella and E. coli, respectively. The regression models can be expressed as: FI = 60.6 log N- 250.9 with R(2) = 0.97 for S. Typhimurium, and FI = 77.8 log N- 245.2 with R(2) = 0.91 for E. coli O157:H7 in the range of cell numbers from 10(4) to 10(7) cfu ml(-1). The detection limit of this method was 10(4) cfu ml(-1). The detection could be completed within 2 hours. The principle of this method could be extended to detect multiple species of bacteria (3-4 species) simultaneously, depending on the availability of each type of QD-antibody conjugates with a unique emission peak and the antibody coated magnetic beads specific to each species of bacteria.  相似文献   

3.
A silicon microcantilever sensor was developed for the detection of Escherichia coli O157:H7. The microcantilever was modified by anti-E. coli O157:H7 antibodies on the silicon surface of the cantilever. When the aquaria E. coli O157:H7 positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the E. coli O157:H7 antigen by the antibodies on the surface of the microcantilever. A negative control sample that does not contain E. coli O157:H7 antigen did not cause any bending of the microcantilever. The detection limit of the sensor was 1 x 10(6) cfu/mL when the assay time was < 2 h.  相似文献   

4.
He X  Zhou L  He D  Wang K  Cao J 《The Analyst》2011,136(20):4183-4191
A novel, fast and sensitive determination strategy for E. coli O157:H7 has been developed by combination of ligandmagnetic nanoparticles (LMNPs) enrichment with a fluorescent silica nanoparticles (FSiNPs) based two-color flow cytometry assay (LMNPs@FSiNPs-FCM). E. coli O157:H7 was first captured and enriched through the lectin concanavalin A (Con A) favored strong adhesion of E. coli O157:H7 to the mannose-conjugated magnetic nanoparticles. The enriched E. coli O157:H7 was further specially labeled with goat anti-E. coli O157:H7 antibody modified RuBpy-doped FSiNPs, and then stained with a nucleic acid dye SYBR Green I (SYBR-I). After dual-labeling with FSiNPs and SYBR-I, the enriched E. coli O157:H7 was determined using multiparameter FCM analysis. With this method, the detection sensitivity was greatly improved due to the LMNPs enrichment and the signal amplification of the FSiNPs labelling method. Furthermore, the false positives caused by aggregates of FSiNPs conjugates and nonspecific binding of FSiNPs to background debris could be significantly decreased. This assay allowed the detection of E. coli O157:H7 in PB buffer at levels as low as 7 cells mL(-1). The total assay time including E. coli O157:H7 sample enrichment and detection was less than 4 h. An artificially contaminated bottled mineral water sample with a concentration of 6 cells mL(-1) can be detected by this method. It is believed that the proposed method will find wide applications in biomedical fields demanding higher sensitive bacterial identification.  相似文献   

5.
《Analytical letters》2012,45(17):2690-2704
A disposable immunosensor for the detection of Escherichia coli O157:H7 based on a multiwalled carbon nanotube–sodium alginate nanocomposite film was constructed. The nanocomposite was placed on a screen-printed carbon electrode, and horseradish peroxidase-labeled antibodies were immobilized to E. coli O157:H7 on the modified electrode to construct the immunosensor. The modification procedure was characterized by atomic force microscopy and cyclic voltammetry. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to E. coli O157:H7 in a concentration range of 103–1010 cfu/mL, with a relatively low detection limit of 2.94 × 102 cfu/mL (S/N = 3). This immunosensor exhibited satisfactory specificity, reproducibility, stability, and accuracy, making it a potential alternative tool for early assessment of E. coli O157:H7.  相似文献   

6.
E. coli O157:H7 is a pathogenic bacterium producing verotoxins that could lead to serious complications such as hemolytic uremia syndrome. Fast detection of such pathogens is important. For rapid detection, aptamers are quickly gaining traction as alternative biorecognition molecules besides conventional antibodies. Several DNA aptamers have been selected for E. coli O157:H7. Nonetheless, there has not been a comparative study of the binding characteristics of these aptamers. In this work, we present a comprehensive analysis of binding characteristics including binding affinity (Kd) and binding capacity (Bmax) of DNA-based aptamers for E. coli O157:H7 using qPCR. Our results show that aptamer E18R has the highest binding capacity to E. coli 157:H7 and the highest specificity over non-pathogenic E. coli strains K12 and DH5α. Our study also finds that the common biotin-tag modification at 5′ end typically changes the binding capacity significantly. For most of the selected aptamers, the binding capacity after a biotin-tag modification decreases. There exists a discrepancy in the binding capability between the selected aptamer and the aptamer used for detection. Our study also shows that a lower concentration of Mg2+ ions in the binding buffer leads to a decrease in the binding capacity of E17F and E18R, while it does not affect the binding capacity of S1 and EcoR1.  相似文献   

7.
A label-free capacitive immunosensor based on quartz crystal Au electrode was developed for rapid and sensitive detection of Escherichia coli O157:H7. The immunosensor was fabricated by immobilizing affinity-purified anti-E. coli O157:H7 antibodies onto self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (MPA) on the surface of a quartz crystal Au electrode. Bacteria suspended in solution became attached to the immobilized antibodies when the immunosensor was tested in liquid samples. The change in capacitance caused by the bacteria was directly measured by an electrochemical detector. An equivalent circuit was introduced to simulate the capacitive immunosensor. The immunosensor was evaluated for E. coli O157:H7 detection in pure culture and inoculated food samples. The experimental results indicated that the capacitance change was linearly correlated with the cell concentration of E. coli O157:H7. The immunosensor was able to discriminate between cellular concentrations of 102–105 cfu mL−1 and has applications in detecting pathogens in food samples. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were also employed to characterize the stepwise assembly of the immunosensor.  相似文献   

8.
The development and characterization of a magnetic bead (MB)-quantum dot (QD) nanoparticles based assay capable of quantifying pathogenic bacteria is presented here. The MB-QD assay operates by having a capturing probe DNA selectively linked to the signaling probe DNA via the target genomic DNA (gDNA) during DNA hybridization. The signaling probe DNA is labeled with fluorescent QD565 which serves as a reporter. The capturing probe DNA is conjugated simultaneously to a MB and another QD655, which serve as a carrier and an internal standard, respectively. Successfully captured target gDNA is separated using a magnetic field and is quantified via a spectrofluorometer. The use of QDs (i.e., QD565/QD655) as both a fluorescence label and an internal standard increased the sensitivity of the assay. The passivation effect and the molar ratio between QD and DNA were optimized. The MB-QD assay demonstrated a detection limit of 890 zeptomolar (i.e., 10−21 mol L−1) concentration for the linear single stranded DNA (ssDNA). It also demonstrated a detection limit of 87 gene copies for double stranded DNA (dsDNA) eaeA gene extracted from pure Escherichia coli (E. coli) O157:H7 culture. Its corresponding dynamic range, sensitivity, and selectivity were also presented. Finally, the bacterial gDNA of E. coli O157:H7 was used to highlight the MB-QD assay's ability to detect below the minimum infective dose (i.e., 100 organisms) of E. coli O157:H7 in water environment.  相似文献   

9.
将免疫荧光纳米标记技术与激光共聚焦显微成像方法相结合,发展了一种基于二氧化硅荧光纳米颗粒和核酸染料SYBR Green Ⅰ的双色显微成像技术用于大肠杆菌O157:H7的检测.采用联吡啶钌(RuBpy)二氧化硅荧光纳米颗粒对羊抗大肠杆菌O157:H7抗体进行修饰,基于抗体-抗原相互作用实现了其对目标大肠杆菌O157:H7...  相似文献   

10.
Intoxication and infection caused by foodborne pathogens are important problems worldwide, and screening tests for multiple pathogens are needed because foods may be contaminated with multiple pathogens and/or toxic metabolites. We developed a 96-well microplate, multiplex antibody microarray method to simultaneously capture and detect Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium (S. typhimurium), as well as a biomolecule (chicken immunoglobulin G or IgG employed as a proteinaceous toxin analog) in a single sample. Microarrayed spots of capture antibodies against the targeted analytes were printed within individual wells of streptavidin-coated polystyrene 96-multiwell microtiter plates and a sandwich assay with fluorescein- or Cy3-labeled reporter antibodies was used for detection. (Printing was achieved with a conventional microarray printing robot that was operated with custom-developed microplate arraying software.) Detection of the IgG was realized from ca. 5 to 25 ng/mL, and detection of E. coli O157:H7 and S. typhimurium was realized from ca. 106 to 109 and ca. 107 to 109 cells/mL, respectively. Multiplex detection of the two bacteria and the IgG in buffer and in culture-enriched ground beef filtrate was established with a total assay (including detection) time of ca. 2.5 h. Detection of S. typhimurium was largely unaffected by high concentrations of the other bacteria and IgG as well as the ground beef filtrate, whereas a small decrease in response was observed for E. coli O157:H7. The multiwell plate, multiplex antibody microarray platform developed here demonstrates a powerful approach for high-throughput screening of large numbers of food samples for multiple pathogens and toxins.  相似文献   

11.
《Analytical letters》2012,45(14):2203-2212
The liquid-chip assay is a new method for detecting bacterial surface antigens. This assay conjugated self-prepared monoclonal antibodies against Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica serovar Typhi with carboxylated fluorescent microspheres based on the double-antibody sandwich principle. This experiment used dimethylacetamide (DMAC) as the solvent to dissolve 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (S-NHS) during conjugation. The modified liquid-chip assay was used to simultaneously detect the four foodborne pathogens. The sensitivity of the assay using the new conjugation method was also evaluated. The limits of detection for E. coli O157:H7, L. monocytogenes, S. aureus, and S. typhi during multiplex detection using the improved method were 0.25, 0.25, 0.5, and 0.25 cfu/mL, respectively, whereas those using the traditional method were 0.5, 0.5, 1, and 0.5 cfu/mL, respectively. Therefore, the improved method is reliable and effectively improves the detection sensitivity of liquid-chip assays.  相似文献   

12.
A fluorescent quantum dot-based antibody array, used in sandwich format, has been developed to detect Escherichia coli O157:H7. Numerous parameters such as solid support, optimal concentration of immunoreagents, blocking reagents, and assay time were optimized for array construction. Quantum dot-conjugated anti-IgG was used as the detecting system. The array allows the detection of E. coli O157:H7 at concentrations below 10 CFU mL−1 without sample enrichment, exhibiting an increase of three orders of magnitude in the limit of detection compared to ELISA. The interference caused by Gram (+) and Gram (−) bacteria was negligible at low concentrations of bacteria.  相似文献   

13.
A fast and sensitive chemiluminescent enzyme-linked immunosorbent assay method to measure pathogenic bacteria, Escherichia coli O157:H7, on immuno-chromatographic membrane was studied. Non-specific binding of proteins on membrane strip was controlled to attain the best performance of immunosensor by optimising the composition of a running buffer. The specificity of the proposed immunostrip was confirmed by conducting experiments for four different micro-organisms. A chemiluminescent signal could be successfully generated from a proposed immunostrip sensing system, and a significant change in the chemiluminescent light intensity with the concentration of target microbes was obtained. E. coli O157:H7 could be quantitatively measured in the range of 1.1?×?103?–1.1?×?107 CFU (colony forming units) mL?1 within 16?min by using the developed chemiluminescent immunostrip.  相似文献   

14.
Immunoassay is a powerful tool for rapid detection of food borne pathogens in food safety monitoring. However, conventional immunoassay always suffers from low sensitivity when it employs enzyme-catalyzing chromogenic substrates to generate colored molecules as signal outputs. In the present study, we report a novel fluorescence immunoassay for the sensitive detection of E. coli O157:H7 through combination of the ultrahigh bioactivity of catalase to hydrogen peroxide (H2O2) and H2O2-sensitive mercaptopropionic acid modified CdTe QDs (MPA-QDs) as a signal transduction. Various parameters, including the concentrations of anti-E. coli O157:H7 polyclonal antibody and biotinylated monoclonal antibody, the amounts of H2O2 and streptavidin labeled catalase (CAT), the hydrolysis temperature and time of CAT to H2O2, as well as the incubation time between H2O2 and MPA-QDs, were systematically investigated and optimized. With optimal conditions, the catalase-mediated fluorescence quenching immunoassay exhibits an excellent sensitivity for E. coli O157:H7 with a detection limit of 5 × 102 CFU/mL, which was approximately 140 times lower than that of horseradish peroxidase-based colorimetric immunoassay. The reliability of the proposed method was further evaluated using E. coli O157:H7 spiked milk samples. The average recoveries of E. coli O157:H7 concentrations from 1.18 × 103 CFU/mL to 1.18 × 106 CFU/mL were in the range of 65.88%–105.6%. In brief, the proposed immunoassay offers a great potential for rapid and sensitive detection of other pathogens in food quality control.  相似文献   

15.
Zhu H  Sikora U  Ozcan A 《The Analyst》2012,137(11):2541-2544
We report a cell-phone based Escherichia coli (E. coli) detection platform for screening of liquid samples. In this compact and cost-effective design attached to a cell-phone, we utilize anti-E. coli O157:H7 antibody functionalized glass capillaries as solid substrates to perform a quantum dot based sandwich assay for specific detection of E. coli O157:H7 in liquid samples. Using battery-powered inexpensive light-emitting-diodes (LEDs) we excite/pump these labelled E. coli particles captured on the capillary surface, where the emission from the quantum dots is then imaged using the cell-phone camera unit through an additional lens that is inserted between the capillary and the cell-phone. By quantifying the fluorescent light emission from each capillary tube, the concentration of E. coli in the sample is determined. We experimentally confirmed the detection limit of this cell-phone based fluorescent imaging and sensing platform as ~5 to 10 cfu mL(-1) in buffer solution. We also tested the specificity of this E. coli detection platform by spiking samples with different species (e.g., Salmonella) to confirm that non-specific binding/detection is negligible. We further demonstrated the proof-of-concept of our approach in a complex food matrix, e.g., fat-free milk, where a similar detection limit of ~5 to 10 cfu mL(-1) was achieved despite challenges associated with the density of proteins that exist in milk. Our results reveal the promising potential of this cell-phone enabled field-portable and cost-effective E. coli detection platform for e.g., screening of water and food samples even in resource limited environments. The presented platform can also be applicable to other pathogens of interest through the use of different antibodies.  相似文献   

16.
As the number of incidents of bacterial infections continues to rise around the globe, simpler, faster, and more sensitive diagnostic techniques are required to improve the safety of the food supply and to screen for potential bacterial infections in humans. We present here direct and indirect approaches for the detection of bacteria, which are based upon a combination of immunofluorescent staining and capillary electrophoresis. In the direct approach, Escherichia coli O157:H7 bacteria stained with fluorescein-tagged specific antibodies are detected by CE, while in the indirect approach fluorescein-tagged specific antibodies to E. coli are first captured by E. coli O157:H7 bacteria and then released and detected by CE. We have identified suitable bacteria staining and CE protocols, which involved a 10 mM Tris-borate-EDTA (TBE) buffer, 0.25 micro g antibody/1 million bacteria, and capillaries dynamically coated with poly-N-hydroxyethylacrylamide (polyDuramide). We have also successfully detected the presence of E. coli O157:H7 in contaminated meat. The total time required for analysis was 6-8 h, which is less than that realized in most commercial assays presently available.  相似文献   

17.
Shiga toxin Escherichia coli (STEC), also called verotoxin-producing E. coli, is a major cause of food-borne illness, capable of causing hemorrhagic colitis and hemolytic–uremic syndrome (HUS). This study was carried out to evaluate the presence of (STEC) and E. coli O157:H7 in shellfish and Mediterranean coastal environments of Morocco. The contamination of shellfish and marine environment with Shiga toxin-producing E. coli (STEC) and E. coli O157:H7, was investigated during 2007 and 2008. A total of 619 samples were analyzed and 151 strains of E. coli were isolated. The presence of the stx1, stx2, and eae genes was tested in E. coli isolates strains using a triplex polymerase chain reaction. STEC was detected in three positives samples (1.9%), corresponding to the serotype O157:H7, the others Shiga toxin-producing E. coli non-O157 were also detected.  相似文献   

18.
Two patterns of signal amplification lateral flow immunoassay (LFIA), which used anti-mouse secondary antibody-linked gold nanoparticle (AuNP) for dual AuNP-LFIA were developed. Escherichia coli O157:H7 was selected as the model analyte. In the signal amplification direct LFIA method, anti-mouse secondary antibody-linked AuNP (anti-mouse-Ab-AuNP) was mixed with sample solution in an ELISA well, after which it was added to LFIA, which already contained anti-E. coli O157:H7 monoclonal antibody-AuNP (anti-E. coli O157:H7-mAb-AuNP) dispersed in the conjugate pad. Polyclonal antibody was the test line, and anti-mouse secondary antibody was the control line in nitrocellulose (NC) membrane. In the signal amplification indirect LFIA method, anti-mouse-Ab-AuNP was mixed with sample solution and anti-E. coli O157:H7-mAb-AuNP complex in ELISA well, creating a dual AuNP complex. This complex was added to LFIA, which had a polyclonal antibody as the test line and secondary antibody as the control line in NC membrane. The detection sensitivity of both LFIAs improved 100-fold and reached 1.14 × 103 CFU mL−1. The 28 nm and 45 nm AuNPs were demonstrated to be the optimal dual AuNP pairs. Signal amplification LFIA was perfectly applied to the detection of milk samples with E. coli O157:H7 via naked eye observation.  相似文献   

19.
Four different food types along with environmental swabs were analyzed by the Reveal for E. coli O157:H7 test (Reveal) and the Bacteriological Analytical Manual (BAM) culture method for the presence of Escherichia coli O157:H7. Twenty-seven laboratories representing academia and private industry in the United States and Canada participated. Sample types were inoculated with E. coli O157:H7 at 2 different levels. Of the 1,095 samples and controls analyzed and confirmed, 459 were positive and 557 were negative by both methods. No statistical differences (p <0.05) were observed between the Reveal and BAM methods.  相似文献   

20.
The Visual Immunoprecipitate (VIP) for the Detection of E. coli O157:H7 in Foods, AOAC Official Method 996.09, has been modified to use a simplified plastic housing for the device. A methods comparison study was conducted to demonstrate the equivalence of this modification to the reference culture method. Three foods were analyzed. In total, valid results were obtained from 240 samples and controls. Results showed that the VIP for E. coli O157:H7 is equivalent to the reference culture methods for the detection of E. coli O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号